MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbeqalb Unicode version

Theorem sbeqalb 3045
Description: Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
sbeqalb  |-  ( A  e.  V  ->  (
( A. x (
ph 
<->  x  =  A )  /\  A. x (
ph 
<->  x  =  B ) )  ->  A  =  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem sbeqalb
StepHypRef Expression
1 bibi1 317 . . . . 5  |-  ( (
ph 
<->  x  =  A )  ->  ( ( ph  <->  x  =  B )  <->  ( x  =  A  <->  x  =  B
) ) )
21biimpa 470 . . . 4  |-  ( ( ( ph  <->  x  =  A )  /\  ( ph 
<->  x  =  B ) )  ->  ( x  =  A  <->  x  =  B
) )
32biimpd 198 . . 3  |-  ( ( ( ph  <->  x  =  A )  /\  ( ph 
<->  x  =  B ) )  ->  ( x  =  A  ->  x  =  B ) )
43alanimi 1551 . 2  |-  ( ( A. x ( ph  <->  x  =  A )  /\  A. x ( ph  <->  x  =  B ) )  ->  A. x ( x  =  A  ->  x  =  B ) )
5 sbceqal 3044 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  x  =  B )  ->  A  =  B ) )
64, 5syl5 28 1  |-  ( A  e.  V  ->  (
( A. x (
ph 
<->  x  =  A )  /\  A. x (
ph 
<->  x  =  B ) )  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1529    = wceq 1625    e. wcel 1686
This theorem is referenced by:  iotaval  5232
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-v 2792  df-sbc 2994
  Copyright terms: Public domain W3C validator