MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbid Unicode version

Theorem sbid 1865
Description: An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbid  |-  ( [ x  /  x ] ph 
<-> 
ph )

Proof of Theorem sbid
StepHypRef Expression
1 equid 1645 . . 3  |-  x  =  x
2 sbequ12 1862 . . 3  |-  ( x  =  x  ->  ( ph 
<->  [ x  /  x ] ph ) )
31, 2ax-mp 8 . 2  |-  ( ph  <->  [ x  /  x ] ph )
43bicomi 193 1  |-  ( [ x  /  x ] ph 
<-> 
ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   [wsb 1630
This theorem is referenced by:  abid  2272  sbceq1a  3002  sbcid  3008  csbid  3089  sbidd  27460  sbidd-misc  27461  bnj605  28218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-11 1716
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-sb 1631
  Copyright terms: Public domain W3C validator