Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbidd-misc Structured version   Unicode version

Theorem sbidd-misc 28399
Description: An identity theorem for substitution. See sbid 1947. See Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by DAW, 18-Feb-2017.)
Assertion
Ref Expression
sbidd-misc  |-  ( (
ph  ->  [ x  /  x ] ps )  <->  ( ph  ->  ps ) )

Proof of Theorem sbidd-misc
StepHypRef Expression
1 sbid 1947 . 2  |-  ( [ x  /  x ] ps 
<->  ps )
21imbi2i 304 1  |-  ( (
ph  ->  [ x  /  x ] ps )  <->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   [wsb 1658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-sb 1659
  Copyright terms: Public domain W3C validator