Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbidd Unicode version

Theorem sbidd 26877
Description: An identity theorem for substitution. See sbid 1895. See Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by DAW, 18-Feb-2017.)
Hypothesis
Ref Expression
sbidd.1  |-  ( ph  ->  [ x  /  x ] ps )
Assertion
Ref Expression
sbidd  |-  ( ph  ->  ps )

Proof of Theorem sbidd
StepHypRef Expression
1 sbidd.1 . 2  |-  ( ph  ->  [ x  /  x ] ps )
2 sbid 1895 . 2  |-  ( [ x  /  x ] ps 
<->  ps )
31, 2sylib 190 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 6   [wsb 1882
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-12o 1664  ax-9 1684  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-sb 1883
  Copyright terms: Public domain W3C validator