Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbiota1 Structured version   Unicode version

Theorem sbiota1 27602
Description: Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
sbiota1  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )

Proof of Theorem sbiota1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2284 . . . 4  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
21biimpi 187 . . 3  |-  ( E! x ph  ->  E. y A. x ( ph  <->  x  =  y ) )
3 iota4 5428 . . 3  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
4 iotaval 5421 . . . . . 6  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
54eqcomd 2440 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
6 spsbim 2150 . . . . . . . 8  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )
7 sbsbc 3157 . . . . . . . 8  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
8 sbsbc 3157 . . . . . . . 8  |-  ( [ y  /  x ] ps 
<-> 
[. y  /  x ]. ps )
96, 7, 83imtr3g 261 . . . . . . 7  |-  ( A. x ( ph  ->  ps )  ->  ( [. y  /  x ]. ph  ->  [. y  /  x ]. ps ) )
10 dfsbcq 3155 . . . . . . . 8  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  x ]. ph  <->  [. ( iota
x ph )  /  x ]. ph ) )
11 dfsbcq 3155 . . . . . . . 8  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  x ]. ps  <->  [. ( iota x ph )  /  x ]. ps ) )
1210, 11imbi12d 312 . . . . . . 7  |-  ( y  =  ( iota x ph )  ->  ( (
[. y  /  x ]. ph  ->  [. y  /  x ]. ps )  <->  ( [. ( iota x ph )  /  x ]. ph  ->  [. ( iota x ph )  /  x ]. ps ) ) )
139, 12syl5ib 211 . . . . . 6  |-  ( y  =  ( iota x ph )  ->  ( A. x ( ph  ->  ps )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  [. ( iota x ph )  /  x ]. ps ) ) )
1413com23 74 . . . . 5  |-  ( y  =  ( iota x ph )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota x ph )  /  x ]. ps ) ) )
155, 14syl 16 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota x ph )  /  x ]. ps ) ) )
1615exlimiv 1644 . . 3  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota
x ph )  /  x ]. ps ) ) )
172, 3, 16sylc 58 . 2  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota
x ph )  /  x ]. ps ) )
18 iotaexeu 27586 . . . . 5  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
1910, 11anbi12d 692 . . . . . . . 8  |-  ( y  =  ( iota x ph )  ->  ( (
[. y  /  x ]. ph  /\  [. y  /  x ]. ps )  <->  (
[. ( iota x ph )  /  x ]. ph  /\  [. ( iota x ph )  /  x ]. ps ) ) )
2019imbi1d 309 . . . . . . 7  |-  ( y  =  ( iota x ph )  ->  ( ( ( [. y  /  x ]. ph  /\  [. y  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) )  <->  ( ( [. ( iota x ph )  /  x ]. ph  /\  [. ( iota x ph )  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) ) ) )
21 sbcan 3195 . . . . . . . 8  |-  ( [. y  /  x ]. ( ph  /\  ps )  <->  ( [. y  /  x ]. ph  /\  [. y  /  x ]. ps ) )
22 spesbc 3234 . . . . . . . 8  |-  ( [. y  /  x ]. ( ph  /\  ps )  ->  E. x ( ph  /\  ps ) )
2321, 22sylbir 205 . . . . . . 7  |-  ( (
[. y  /  x ]. ph  /\  [. y  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) )
2420, 23vtoclg 3003 . . . . . 6  |-  ( ( iota x ph )  e.  _V  ->  ( ( [. ( iota x ph )  /  x ]. ph  /\  [. ( iota x ph )  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) ) )
2524exp3a 426 . . . . 5  |-  ( ( iota x ph )  e.  _V  ->  ( [. ( iota x ph )  /  x ]. ph  ->  (
[. ( iota x ph )  /  x ]. ps  ->  E. x
( ph  /\  ps )
) ) )
2618, 3, 25sylc 58 . . . 4  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  x ]. ps  ->  E. x ( ph  /\ 
ps ) ) )
2726anc2li 541 . . 3  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  x ]. ps  ->  ( E! x ph  /\ 
E. x ( ph  /\ 
ps ) ) ) )
28 eupicka 2344 . . 3  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)
2927, 28syl6 31 . 2  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  x ]. ps  ->  A. x ( ph  ->  ps ) ) )
3017, 29impbid 184 1  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652   [wsb 1658    e. wcel 1725   E!weu 2280   _Vcvv 2948   [.wsbc 3153   iotacio 5408
This theorem is referenced by:  sbaniota  27603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950  df-sbc 3154  df-un 3317  df-sn 3812  df-pr 3813  df-uni 4008  df-iota 5410
  Copyright terms: Public domain W3C validator