MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Unicode version

Theorem sbth 6863
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 
A is smaller (has lower cardinality) than  B and vice-versa, then  A and  B are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6853 through sbthlem10 6862; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 6862. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
sbth  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B )

Proof of Theorem sbth
StepHypRef Expression
1 reldom 6752 . . . 4  |-  Rel  ~<_
21brrelexi 4633 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
31brrelexi 4633 . . 3  |-  ( B  ~<_  A  ->  B  e.  _V )
4 breq1 3920 . . . . . 6  |-  ( z  =  A  ->  (
z  ~<_  w  <->  A  ~<_  w ) )
5 breq2 3921 . . . . . 6  |-  ( z  =  A  ->  (
w  ~<_  z  <->  w  ~<_  A ) )
64, 5anbi12d 694 . . . . 5  |-  ( z  =  A  ->  (
( z  ~<_  w  /\  w  ~<_  z )  <->  ( A  ~<_  w  /\  w  ~<_  A ) ) )
7 breq1 3920 . . . . 5  |-  ( z  =  A  ->  (
z  ~~  w  <->  A  ~~  w ) )
86, 7imbi12d 313 . . . 4  |-  ( z  =  A  ->  (
( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w
)  <->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) ) )
9 breq2 3921 . . . . . 6  |-  ( w  =  B  ->  ( A  ~<_  w  <->  A  ~<_  B ) )
10 breq1 3920 . . . . . 6  |-  ( w  =  B  ->  (
w  ~<_  A  <->  B  ~<_  A ) )
119, 10anbi12d 694 . . . . 5  |-  ( w  =  B  ->  (
( A  ~<_  w  /\  w  ~<_  A )  <->  ( A  ~<_  B  /\  B  ~<_  A ) ) )
12 breq2 3921 . . . . 5  |-  ( w  =  B  ->  ( A  ~~  w  <->  A  ~~  B ) )
1311, 12imbi12d 313 . . . 4  |-  ( w  =  B  ->  (
( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w
)  <->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) ) )
14 vex 2728 . . . . 5  |-  z  e. 
_V
15 sseq1 3117 . . . . . . 7  |-  ( y  =  x  ->  (
y  C_  z  <->  x  C_  z
) )
16 imaeq2 4912 . . . . . . . . . 10  |-  ( y  =  x  ->  (
f " y )  =  ( f "
x ) )
1716difeq2d 3208 . . . . . . . . 9  |-  ( y  =  x  ->  (
w  \  ( f " y ) )  =  ( w  \ 
( f " x
) ) )
1817imaeq2d 4916 . . . . . . . 8  |-  ( y  =  x  ->  (
g " ( w 
\  ( f "
y ) ) )  =  ( g "
( w  \  (
f " x ) ) ) )
19 difeq2 3202 . . . . . . . 8  |-  ( y  =  x  ->  (
z  \  y )  =  ( z  \  x ) )
2018, 19sseq12d 3125 . . . . . . 7  |-  ( y  =  x  ->  (
( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y )  <->  ( g " ( w  \ 
( f " x
) ) )  C_  ( z  \  x
) ) )
2115, 20anbi12d 694 . . . . . 6  |-  ( y  =  x  ->  (
( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) )  <-> 
( x  C_  z  /\  ( g " (
w  \  ( f " x ) ) )  C_  ( z  \  x ) ) ) )
2221cbvabv 2368 . . . . 5  |-  { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) }  =  {
x  |  ( x 
C_  z  /\  (
g " ( w 
\  ( f "
x ) ) ) 
C_  ( z  \  x ) ) }
23 eqid 2253 . . . . 5  |-  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) } )  u.  ( `' g  |`  ( z  \  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )  =  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } )  u.  ( `' g  |`  ( z 
\  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )
24 vex 2728 . . . . 5  |-  w  e. 
_V
2514, 22, 23, 24sbthlem10 6862 . . . 4  |-  ( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w )
268, 13, 25vtocl2g 2783 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B
) )
272, 3, 26syl2an 465 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  (
( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
2827pm2.43i 45 1  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2239   _Vcvv 2725    \ cdif 3072    u. cun 3073    C_ wss 3075   U.cuni 3724   class class class wbr 3917   `'ccnv 4576    |` cres 4579   "cima 4580    ~~ cen 6743    ~<_ cdom 6744
This theorem is referenced by:  sbthb  6864  sdomnsym  6868  domtriord  6889  xpen  6906  limenpsi  6918  php  6927  onomeneq  6932  unbnn  6995  infxpenlem  7522  fseqen  7535  infpwfien  7570  inffien  7571  alephdom  7589  mappwen  7620  infcdaabs  7713  infunabs  7714  infcda  7715  infdif  7716  infxpabs  7719  infmap2  7725  gchhar  8170  gchaleph  8174  inttsk  8273  inar1  8274  xpnnenOLD  12324  znnen  12327  qnnen  12328  rpnnen  12341  rexpen  12342  fislw  14733  opnreen  18130  ovolctb2  18645  vitali  18762  aannenlem3  19504  basellem4  20087  lgsqrlem4  20349  umgraex  22975  sndw  24194  pellexlem4  26012  pellexlem5  26013  idomsubgmo  26609
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4035  ax-nul 4043  ax-pow 4079  ax-pr 4105  ax-un 4400
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2511  df-rex 2512  df-rab 2514  df-v 2727  df-dif 3078  df-un 3080  df-in 3082  df-ss 3086  df-nul 3360  df-if 3468  df-pw 3529  df-sn 3547  df-pr 3548  df-op 3550  df-uni 3725  df-br 3918  df-opab 3972  df-id 4199  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-fun 4599  df-fn 4600  df-f 4601  df-f1 4602  df-fo 4603  df-f1o 4604  df-en 6747  df-dom 6748
  Copyright terms: Public domain W3C validator