Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Structured version   Unicode version

Theorem scottex 7814
 Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex
Distinct variable group:   ,,

Proof of Theorem scottex
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4342 . . . 4
2 eleq1 2498 . . . 4
31, 2mpbiri 226 . . 3
4 rabexg 4356 . . 3
53, 4syl 16 . 2
6 neq0 3640 . . 3
7 nfra1 2758 . . . . . 6
8 nfcv 2574 . . . . . 6
97, 8nfrab 2891 . . . . 5
109nfel1 2584 . . . 4
11 rsp 2768 . . . . . . . 8
1211com12 30 . . . . . . 7
1312ralrimivw 2792 . . . . . 6
14 ss2rab 3421 . . . . . 6
1513, 14sylibr 205 . . . . 5
16 rankon 7724 . . . . . . . 8
17 fveq2 5731 . . . . . . . . . . . 12
1817sseq1d 3377 . . . . . . . . . . 11
1918elrab 3094 . . . . . . . . . 10
2019simprbi 452 . . . . . . . . 9
2120rgen 2773 . . . . . . . 8
22 sseq2 3372 . . . . . . . . . 10
2322ralbidv 2727 . . . . . . . . 9
2423rspcev 3054 . . . . . . . 8
2516, 21, 24mp2an 655 . . . . . . 7
26 bndrank 7770 . . . . . . 7
2725, 26ax-mp 5 . . . . . 6
2827ssex 4350 . . . . 5
2915, 28syl 16 . . . 4
3010, 29exlimi 1822 . . 3
316, 30sylbi 189 . 2
325, 31pm2.61i 159 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wex 1551   wceq 1653   wcel 1726  wral 2707  wrex 2708  crab 2711  cvv 2958   wss 3322  c0 3630  con0 4584  cfv 5457  crnk 7692 This theorem is referenced by:  scottexs  7816  cplem2  7819  kardex  7823 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-reg 7563  ax-inf2 7599 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-recs 6636  df-rdg 6671  df-r1 7693  df-rank 7694
 Copyright terms: Public domain W3C validator