MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtr Unicode version

Theorem sdomdomtr 6962
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
sdomdomtr  |-  ( ( A  ~<  B  /\  B  ~<_  C )  ->  A  ~<  C )

Proof of Theorem sdomdomtr
StepHypRef Expression
1 sdomdom 6857 . . 3  |-  ( A 
~<  B  ->  A  ~<_  B )
2 domtr 6882 . . 3  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan 459 . 2  |-  ( ( A  ~<  B  /\  B  ~<_  C )  ->  A  ~<_  C )
4 simpl 445 . . 3  |-  ( ( A  ~<  B  /\  B  ~<_  C )  ->  A  ~<  B )
5 simpr 449 . . . . . 6  |-  ( ( A  ~<  B  /\  B  ~<_  C )  ->  B  ~<_  C )
6 ensym 6878 . . . . . 6  |-  ( A 
~~  C  ->  C  ~~  A )
7 domentr 6888 . . . . . 6  |-  ( ( B  ~<_  C  /\  C  ~~  A )  ->  B  ~<_  A )
85, 6, 7syl2an 465 . . . . 5  |-  ( ( ( A  ~<  B  /\  B  ~<_  C )  /\  A  ~~  C )  ->  B  ~<_  A )
9 domnsym 6955 . . . . 5  |-  ( B  ~<_  A  ->  -.  A  ~<  B )
108, 9syl 17 . . . 4  |-  ( ( ( A  ~<  B  /\  B  ~<_  C )  /\  A  ~~  C )  ->  -.  A  ~<  B )
1110ex 425 . . 3  |-  ( ( A  ~<  B  /\  B  ~<_  C )  -> 
( A  ~~  C  ->  -.  A  ~<  B ) )
124, 11mt2d 111 . 2  |-  ( ( A  ~<  B  /\  B  ~<_  C )  ->  -.  A  ~~  C )
13 brsdom 6852 . 2  |-  ( A 
~<  C  <->  ( A  ~<_  C  /\  -.  A  ~~  C ) )
143, 12, 13sylanbrc 648 1  |-  ( ( A  ~<  B  /\  B  ~<_  C )  ->  A  ~<  C )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   class class class wbr 3997    ~~ cen 6828    ~<_ cdom 6829    ~< csdm 6830
This theorem is referenced by:  sdomentr  6963  sucdom  7026  sucdomiOLD  7027  infsdomnn  7086  fodomfib  7104  marypha1lem  7154  r1sdom  7414  infxpenlem  7609  infunsdom1  7807  fin56  7987  fodomb  8119  pwcfsdom  8173  cfpwsdom  8174  canthp1lem2  8243  gchhar  8261  gchpwdom  8264  gchina  8289  tsksdom  8346  tskpr  8360  tskcard  8371  gruina  8408
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834
  Copyright terms: Public domain W3C validator