MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectcan Unicode version

Theorem sectcan 13757
Description: If  G is a section of  F and  F is a section of  H, then  G  =  H. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectcan.b  |-  B  =  ( Base `  C
)
sectcan.s  |-  S  =  (Sect `  C )
sectcan.c  |-  ( ph  ->  C  e.  Cat )
sectcan.x  |-  ( ph  ->  X  e.  B )
sectcan.y  |-  ( ph  ->  Y  e.  B )
sectcan.1  |-  ( ph  ->  G ( X S Y ) F )
sectcan.2  |-  ( ph  ->  F ( Y S X ) H )
Assertion
Ref Expression
sectcan  |-  ( ph  ->  G  =  H )

Proof of Theorem sectcan
StepHypRef Expression
1 sectcan.b . . . 4  |-  B  =  ( Base `  C
)
2 eqid 2358 . . . 4  |-  (  Hom  `  C )  =  (  Hom  `  C )
3 eqid 2358 . . . 4  |-  (comp `  C )  =  (comp `  C )
4 sectcan.c . . . 4  |-  ( ph  ->  C  e.  Cat )
5 sectcan.x . . . 4  |-  ( ph  ->  X  e.  B )
6 sectcan.y . . . 4  |-  ( ph  ->  Y  e.  B )
7 sectcan.1 . . . . . 6  |-  ( ph  ->  G ( X S Y ) F )
8 eqid 2358 . . . . . . 7  |-  ( Id
`  C )  =  ( Id `  C
)
9 sectcan.s . . . . . . 7  |-  S  =  (Sect `  C )
101, 2, 3, 8, 9, 4, 5, 6issect 13755 . . . . . 6  |-  ( ph  ->  ( G ( X S Y ) F  <-> 
( G  e.  ( X (  Hom  `  C
) Y )  /\  F  e.  ( Y
(  Hom  `  C ) X )  /\  ( F ( <. X ,  Y >. (comp `  C
) X ) G )  =  ( ( Id `  C ) `
 X ) ) ) )
117, 10mpbid 201 . . . . 5  |-  ( ph  ->  ( G  e.  ( X (  Hom  `  C
) Y )  /\  F  e.  ( Y
(  Hom  `  C ) X )  /\  ( F ( <. X ,  Y >. (comp `  C
) X ) G )  =  ( ( Id `  C ) `
 X ) ) )
1211simp1d 967 . . . 4  |-  ( ph  ->  G  e.  ( X (  Hom  `  C
) Y ) )
13 sectcan.2 . . . . . 6  |-  ( ph  ->  F ( Y S X ) H )
141, 2, 3, 8, 9, 4, 6, 5issect 13755 . . . . . 6  |-  ( ph  ->  ( F ( Y S X ) H  <-> 
( F  e.  ( Y (  Hom  `  C
) X )  /\  H  e.  ( X
(  Hom  `  C ) Y )  /\  ( H ( <. Y ,  X >. (comp `  C
) Y ) F )  =  ( ( Id `  C ) `
 Y ) ) ) )
1513, 14mpbid 201 . . . . 5  |-  ( ph  ->  ( F  e.  ( Y (  Hom  `  C
) X )  /\  H  e.  ( X
(  Hom  `  C ) Y )  /\  ( H ( <. Y ,  X >. (comp `  C
) Y ) F )  =  ( ( Id `  C ) `
 Y ) ) )
1615simp1d 967 . . . 4  |-  ( ph  ->  F  e.  ( Y (  Hom  `  C
) X ) )
1715simp2d 968 . . . 4  |-  ( ph  ->  H  e.  ( X (  Hom  `  C
) Y ) )
181, 2, 3, 4, 5, 6, 5, 12, 16, 6, 17catass 13687 . . 3  |-  ( ph  ->  ( ( H (
<. Y ,  X >. (comp `  C ) Y ) F ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  ( H ( <. X ,  X >. (comp `  C
) Y ) ( F ( <. X ,  Y >. (comp `  C
) X ) G ) ) )
1915simp3d 969 . . . 4  |-  ( ph  ->  ( H ( <. Y ,  X >. (comp `  C ) Y ) F )  =  ( ( Id `  C
) `  Y )
)
2019oveq1d 5960 . . 3  |-  ( ph  ->  ( ( H (
<. Y ,  X >. (comp `  C ) Y ) F ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  ( ( ( Id `  C ) `  Y
) ( <. X ,  Y >. (comp `  C
) Y ) G ) )
2111simp3d 969 . . . 4  |-  ( ph  ->  ( F ( <. X ,  Y >. (comp `  C ) X ) G )  =  ( ( Id `  C
) `  X )
)
2221oveq2d 5961 . . 3  |-  ( ph  ->  ( H ( <. X ,  X >. (comp `  C ) Y ) ( F ( <. X ,  Y >. (comp `  C ) X ) G ) )  =  ( H ( <. X ,  X >. (comp `  C ) Y ) ( ( Id `  C ) `  X
) ) )
2318, 20, 223eqtr3d 2398 . 2  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  ( H ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
) )
241, 2, 8, 4, 5, 3, 6, 12catlid 13684 . 2  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) G )  =  G )
251, 2, 8, 4, 5, 3, 6, 17catrid 13685 . 2  |-  ( ph  ->  ( H ( <. X ,  X >. (comp `  C ) Y ) ( ( Id `  C ) `  X
) )  =  H )
2623, 24, 253eqtr3d 2398 1  |-  ( ph  ->  G  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1642    e. wcel 1710   <.cop 3719   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   Basecbs 13245    Hom chom 13316  compcco 13317   Catccat 13665   Idccid 13666  Sectcsect 13746
This theorem is referenced by:  invfun  13765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-cat 13669  df-cid 13670  df-sect 13749
  Copyright terms: Public domain W3C validator