Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seglecgr12im Unicode version

Theorem seglecgr12im 25952
Description: Substitution law for segment comparison under congruence. Theorem 5.6 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
seglecgr12im  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. A ,  B >.  Seg<_  <. C ,  D >. )  ->  <. E ,  F >. 
Seg<_ 
<. G ,  H >. ) )

Proof of Theorem seglecgr12im
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprrl 741 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  y  Btwn  <. C ,  D >. )
2 simprlr 740 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  <. C ,  D >.Cgr <. G ,  H >. )
3 simpl11 1032 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  N  e.  NN )
4 simpl21 1035 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  C  e.  ( EE `  N
) )
5 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  y  e.  ( EE `  N
) )
6 simpl22 1036 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  D  e.  ( EE `  N
) )
7 simpl32 1039 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  G  e.  ( EE `  N
) )
8 simpl33 1040 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  H  e.  ( EE `  N
) )
9 cgrxfr 25897 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. ) ) )
103, 4, 5, 6, 7, 8, 9syl132anc 1202 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
) )
1110adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
) )
121, 2, 11mp2and 661 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
)
13 anass 631 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  z  e.  ( EE `  N
) )  <->  ( (
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) ) )
14 simpl11 1032 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  N  e.  NN )
15 simpl21 1035 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
16 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
17 simpl22 1036 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
18 simpl32 1039 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N ) )
19 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  z  e.  ( EE `  N ) )
20 simpl33 1040 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N ) )
21 brcgr3 25888 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  z  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  <->  ( <. C ,  y >.Cgr <. G , 
z >.  /\  <. C ,  D >.Cgr <. G ,  H >.  /\  <. y ,  D >.Cgr
<. z ,  H >. ) ) )
2214, 15, 16, 17, 18, 19, 20, 21syl133anc 1207 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. 
<->  ( <. C ,  y
>.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )
2322adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  <->  ( <. C ,  y >.Cgr <. G , 
z >.  /\  <. C ,  D >.Cgr <. G ,  H >.  /\  <. y ,  D >.Cgr
<. z ,  H >. ) ) )
24 df-3an 938 . . . . . . . . . . . . . . 15  |-  ( ( ( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) )  <->  ( ( (
<. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  /\  ( <. C ,  y >.Cgr <. G ,  z >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )
25 simpl23 1037 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N ) )
26 simpl31 1038 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N ) )
27 simpl12 1033 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
28 simpl13 1034 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
29 simpr1l 1014 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. A ,  B >.Cgr <. E ,  F >. )
30 simpr2r 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  y
>. )
3114, 27, 28, 25, 26, 15, 16, 29, 30cgrtr4and 25828 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. C ,  y
>. )
32 simpr31 1047 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. C , 
y >.Cgr <. G ,  z
>. )
3314, 25, 26, 15, 16, 18, 19, 31, 32cgrtrand 25835 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. G ,  z
>. )
3424, 33sylan2br 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( (
<. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  /\  ( <. C ,  y >.Cgr <. G ,  z >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. G ,  z
>. )
3534expr 599 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( <. C ,  y
>.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. )  ->  <. E ,  F >.Cgr
<. G ,  z >.
) )
3623, 35sylbid 207 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  ->  <. E ,  F >.Cgr <. G ,  z
>. ) )
3736anim2d 549 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
3813, 37sylanb 459 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  z  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
3938an32s 780 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  /\  z  e.  ( EE `  N
) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
4039reximdva 2782 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4112, 40mpd 15 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) )
4241expr 599 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( (
y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4342an32s 780 . . . . 5  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  /\  y  e.  ( EE `  N
) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4443rexlimdva 2794 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
45 simp11 987 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  N  e.  NN )
46 simp12 988 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
47 simp13 989 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
48 simp21 990 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
49 simp22 991 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
50 brsegle 25950 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
5145, 46, 47, 48, 49, 50syl122anc 1193 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) )
5251adantr 452 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >. 
<->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
53 simp23 992 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
54 simp31 993 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
55 simp32 994 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N
) )
56 simp33 995 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N
) )
57 brsegle 25950 . . . . . 6  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N ) ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >.  <->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
5845, 53, 54, 55, 56, 57syl122anc 1193 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >.  <->  E. z  e.  ( EE `  N ) ( z 
Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr
<. G ,  z >.
) ) )
5958adantr 452 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >. 
<->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
6044, 52, 593imtr4d 260 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  ->  <. E ,  F >.  Seg<_  <. G ,  H >. ) )
6160exp32 589 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.Cgr <. E ,  F >.  -> 
( <. C ,  D >.Cgr
<. G ,  H >.  -> 
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  ->  <. E ,  F >.  Seg<_  <. G ,  H >. ) ) ) )
62613impd 1167 1  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. A ,  B >.  Seg<_  <. C ,  D >. )  ->  <. E ,  F >. 
Seg<_ 
<. G ,  H >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721   E.wrex 2671   <.cop 3781   class class class wbr 4176   ` cfv 5417   NNcn 9960   EEcee 25735    Btwn cbtwn 25736  Cgrccgr 25737  Cgr3ccgr3 25878    Seg<_ csegle 25948
This theorem is referenced by:  seglecgr12  25953
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-oi 7439  df-card 7786  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-ico 10882  df-icc 10883  df-fz 11004  df-fzo 11095  df-seq 11283  df-exp 11342  df-hash 11578  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-clim 12241  df-sum 12439  df-ee 25738  df-btwn 25739  df-cgr 25740  df-ofs 25825  df-cgr3 25882  df-segle 25949
  Copyright terms: Public domain W3C validator