Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segletr Unicode version

Theorem segletr 24113
Description: Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
segletr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )

Proof of Theorem segletr
StepHypRef Expression
1 simprll 741 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
y  Btwn  <. C ,  D >. )
2 simprrr 744 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  <. C ,  D >.Cgr <. E ,  z >. )
31, 2jca 520 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )
4 simpl1 963 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simpl23 1040 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
6 simprl 735 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
7 simpl31 1041 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
8 simpl32 1042 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N ) )
9 simprr 736 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  z  e.  ( EE `  N ) )
10 cgrxfr 24054 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  z  e.  ( EE `  N
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
114, 5, 6, 7, 8, 9, 10syl132anc 1205 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  ( ( y 
Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
)  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )
) )
1211adantr 453 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
133, 12mpd 16 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) )
14 anass 633 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
15 df-3an 941 . . . . . . . . . 10  |-  ( ( y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) )  <->  ( (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N ) ) )
1615anbi2i 678 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
1714, 16bitr4i 245 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) ) )
18 simpl1 963 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  N  e.  NN )
19 simpl23 1040 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
20 simpr1 966 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
y  e.  ( EE
`  N ) )
21 simpl31 1041 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
22 simpl32 1042 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  E  e.  ( EE `  N ) )
23 simpr3 968 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  w  e.  ( EE `  N ) )
24 simpr2 967 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
z  e.  ( EE
`  N ) )
25 brcgr3 24045 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  w  e.  ( EE `  N
)  /\  z  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <->  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1210 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <-> 
( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2726anbi2d 687 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
2827adantr 453 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E ,  z
>.  /\  ( <. C , 
y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
29 df-3an 941 . . . . . . . . . . 11  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  <->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
30 simpl33 1043 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  F  e.  ( EE `  N ) )
31 simpr3l 1021 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E , 
z >. )
32 simpr2l 1019 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  z  Btwn  <. E ,  F >. )
3318, 22, 23, 24, 30, 31, 32btwnexchand 24025 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E ,  F >. )
34 simpl21 1038 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
35 simpl22 1039 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
36 simpr1r 1018 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. C ,  y >.
)
37 simp3r1 1068 . . . . . . . . . . . . . 14  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  ->  <. C ,  y >.Cgr <. E ,  w >. )
3837adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. C ,  y
>.Cgr <. E ,  w >. )
3918, 34, 35, 19, 20, 22, 23, 36, 38cgrtrand 23992 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. E ,  w >. )
4033, 39jca 520 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4129, 40sylan2br 464 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4241expr 601 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4328, 42sylbid 208 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4417, 43sylanb 460 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4544an32s 782 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  /\  w  e.  ( EE `  N ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4645reximdva 2630 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4713, 46mpd 16 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) )
4847exp31 590 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  ->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) ) )
4948rexlimdvv 2648 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) )
50 simp1 960 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
51 simp21 993 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
52 simp22 994 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
53 simp23 995 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
54 simp31 996 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
55 brsegle 24107 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
5650, 51, 52, 53, 54, 55syl122anc 1196 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) )
57 simp32 997 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
58 simp33 998 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
59 brsegle 24107 . . . . 5  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )
6050, 53, 54, 57, 58, 59syl122anc 1196 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z 
Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )
6156, 60anbi12d 694 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <-> 
( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) ) )
62 reeanv 2682 . . 3  |-  ( E. y  e.  ( EE
`  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  <->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )
6361, 62syl6bbr 256 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <->  E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) ) )
64 brsegle 24107 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
6550, 51, 52, 57, 58, 64syl122anc 1196 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w 
Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr
<. E ,  w >. ) ) )
6649, 63, 653imtr4d 261 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    e. wcel 1621   E.wrex 2519   <.cop 3617   class class class wbr 3997   ` cfv 4673   NNcn 9714   EEcee 23892    Btwn cbtwn 23893  Cgrccgr 23894  Cgr3ccgr3 24035    Seg<_ csegle 24105
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-rp 10323  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-seq 11014  df-exp 11072  df-hash 11305  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-sum 12125  df-ee 23895  df-btwn 23896  df-cgr 23897  df-ofs 23982  df-cgr3 24039  df-segle 24106
  Copyright terms: Public domain W3C validator