Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segletr Unicode version

Theorem segletr 24739
Description: Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
segletr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )

Proof of Theorem segletr
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprll 738 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
y  Btwn  <. C ,  D >. )
2 simprrr 741 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  <. C ,  D >.Cgr <. E ,  z >. )
31, 2jca 518 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )
4 simpl1 958 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simpl23 1035 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
6 simprl 732 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
7 simpl31 1036 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
8 simpl32 1037 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N ) )
9 simprr 733 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  z  e.  ( EE `  N ) )
10 cgrxfr 24680 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  z  e.  ( EE `  N
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
114, 5, 6, 7, 8, 9, 10syl132anc 1200 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  ( ( y 
Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
)  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )
) )
1211adantr 451 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
133, 12mpd 14 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) )
14 anass 630 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
15 df-3an 936 . . . . . . . . . 10  |-  ( ( y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) )  <->  ( (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N ) ) )
1615anbi2i 675 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
1714, 16bitr4i 243 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) ) )
18 simpl1 958 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  N  e.  NN )
19 simpl23 1035 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
20 simpr1 961 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
y  e.  ( EE
`  N ) )
21 simpl31 1036 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
22 simpl32 1037 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  E  e.  ( EE `  N ) )
23 simpr3 963 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  w  e.  ( EE `  N ) )
24 simpr2 962 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
z  e.  ( EE
`  N ) )
25 brcgr3 24671 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  w  e.  ( EE `  N
)  /\  z  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <->  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1205 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <-> 
( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2726anbi2d 684 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
2827adantr 451 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E ,  z
>.  /\  ( <. C , 
y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
29 df-3an 936 . . . . . . . . . . 11  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  <->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
30 simpl33 1038 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  F  e.  ( EE `  N ) )
31 simpr3l 1016 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E , 
z >. )
32 simpr2l 1014 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  z  Btwn  <. E ,  F >. )
3318, 22, 23, 24, 30, 31, 32btwnexchand 24651 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E ,  F >. )
34 simpl21 1033 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
35 simpl22 1034 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
36 simpr1r 1013 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. C ,  y >.
)
37 simp3r1 1063 . . . . . . . . . . . . . 14  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  ->  <. C ,  y >.Cgr <. E ,  w >. )
3837adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. C ,  y
>.Cgr <. E ,  w >. )
3918, 34, 35, 19, 20, 22, 23, 36, 38cgrtrand 24618 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. E ,  w >. )
4033, 39jca 518 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4129, 40sylan2br 462 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4241expr 598 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4328, 42sylbid 206 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4417, 43sylanb 458 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4544an32s 779 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  /\  w  e.  ( EE `  N ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4645reximdva 2657 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4713, 46mpd 14 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) )
4847exp31 587 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  ->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) ) )
4948rexlimdvv 2675 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) )
50 simp1 955 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
51 simp21 988 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
52 simp22 989 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
53 simp23 990 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
54 simp31 991 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
55 brsegle 24733 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
5650, 51, 52, 53, 54, 55syl122anc 1191 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) )
57 simp32 992 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
58 simp33 993 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
59 brsegle 24733 . . . . 5  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )
6050, 53, 54, 57, 58, 59syl122anc 1191 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z 
Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )
6156, 60anbi12d 691 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <-> 
( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) ) )
62 reeanv 2709 . . 3  |-  ( E. y  e.  ( EE
`  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  <->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )
6361, 62syl6bbr 254 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <->  E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) ) )
64 brsegle 24733 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
6550, 51, 52, 57, 58, 64syl122anc 1191 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w 
Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr
<. E ,  w >. ) ) )
6649, 63, 653imtr4d 259 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1686   E.wrex 2546   <.cop 3645   class class class wbr 4025   ` cfv 5257   NNcn 9748   EEcee 24518    Btwn cbtwn 24519  Cgrccgr 24520  Cgr3ccgr3 24661    Seg<_ csegle 24731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-ee 24521  df-btwn 24522  df-cgr 24523  df-ofs 24608  df-cgr3 24665  df-segle 24732
  Copyright terms: Public domain W3C validator