Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segletr Unicode version

Theorem segletr 23911
Description: Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
segletr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )

Proof of Theorem segletr
StepHypRef Expression
1 simprll 741 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
y  Btwn  <. C ,  D >. )
2 simprrr 744 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  <. C ,  D >.Cgr <. E ,  z >. )
31, 2jca 520 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )
4 simpl1 963 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simpl23 1040 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
6 simprl 735 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
7 simpl31 1041 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
8 simpl32 1042 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N ) )
9 simprr 736 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  z  e.  ( EE `  N ) )
10 cgrxfr 23852 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  z  e.  ( EE `  N
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
114, 5, 6, 7, 8, 9, 10syl132anc 1205 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  ( ( y 
Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
)  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )
) )
1211adantr 453 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
133, 12mpd 16 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) )
14 anass 633 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
15 df-3an 941 . . . . . . . . . 10  |-  ( ( y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) )  <->  ( (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N ) ) )
1615anbi2i 678 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
1714, 16bitr4i 245 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) ) )
18 simpl1 963 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  N  e.  NN )
19 simpl23 1040 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
20 simpr1 966 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
y  e.  ( EE
`  N ) )
21 simpl31 1041 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
22 simpl32 1042 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  E  e.  ( EE `  N ) )
23 simpr3 968 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  w  e.  ( EE `  N ) )
24 simpr2 967 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
z  e.  ( EE
`  N ) )
25 brcgr3 23843 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  w  e.  ( EE `  N
)  /\  z  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <->  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1210 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <-> 
( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2726anbi2d 687 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
2827adantr 453 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E ,  z
>.  /\  ( <. C , 
y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
29 df-3an 941 . . . . . . . . . . 11  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  <->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
30 simpl33 1043 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  F  e.  ( EE `  N ) )
31 simpr3l 1021 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E , 
z >. )
32 simpr2l 1019 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  z  Btwn  <. E ,  F >. )
3318, 22, 23, 24, 30, 31, 32btwnexchand 23823 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E ,  F >. )
34 simpl21 1038 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
35 simpl22 1039 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
36 simpr1r 1018 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. C ,  y >.
)
37 simp3r1 1068 . . . . . . . . . . . . . 14  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  ->  <. C ,  y >.Cgr <. E ,  w >. )
3837adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. C ,  y
>.Cgr <. E ,  w >. )
3918, 34, 35, 19, 20, 22, 23, 36, 38cgrtrand 23790 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. E ,  w >. )
4033, 39jca 520 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4129, 40sylan2br 464 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4241expr 601 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4328, 42sylbid 208 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4417, 43sylanb 460 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4544an32s 782 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  /\  w  e.  ( EE `  N ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4645reximdva 2617 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4713, 46mpd 16 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) )
4847exp31 590 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  ->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) ) )
4948rexlimdvv 2635 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) )
50 simp1 960 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
51 simp21 993 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
52 simp22 994 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
53 simp23 995 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
54 simp31 996 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
55 brsegle 23905 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
5650, 51, 52, 53, 54, 55syl122anc 1196 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) )
57 simp32 997 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
58 simp33 998 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
59 brsegle 23905 . . . . 5  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )
6050, 53, 54, 57, 58, 59syl122anc 1196 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z 
Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )
6156, 60anbi12d 694 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <-> 
( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) ) )
62 reeanv 2669 . . 3  |-  ( E. y  e.  ( EE
`  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  <->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )
6361, 62syl6bbr 256 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <->  E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) ) )
64 brsegle 23905 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
6550, 51, 52, 57, 58, 64syl122anc 1196 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w 
Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr
<. E ,  w >. ) ) )
6649, 63, 653imtr4d 261 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    e. wcel 1621   E.wrex 2510   <.cop 3547   class class class wbr 3920   ` cfv 4592   NNcn 9626   EEcee 23690    Btwn cbtwn 23691  Cgrccgr 23692  Cgr3ccgr3 23833    Seg<_ csegle 23903
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-ee 23693  df-btwn 23694  df-cgr 23695  df-ofs 23780  df-cgr3 23837  df-segle 23904
  Copyright terms: Public domain W3C validator