MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Unicode version

Theorem selberg 20645
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that  sum_
n  <_  x , Λ ( n ) log n  +  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n )  =  2 x log x  +  O
( x ). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Distinct variable group:    x, n

Proof of Theorem selberg
StepHypRef Expression
1 fveq2 5444 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (Λ `  n )  =  (Λ `  d ) )
2 oveq2 5786 . . . . . . . . . . . . . 14  |-  ( n  =  d  ->  (
x  /  n )  =  ( x  / 
d ) )
32fveq2d 5448 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (ψ `  ( x  /  n
) )  =  (ψ `  ( x  /  d
) ) )
41, 3oveq12d 5796 . . . . . . . . . . . 12  |-  ( n  =  d  ->  (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  =  ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )
54cbvsumv 12120 . . . . . . . . . . 11  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )
6 fzfid 10987 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  d
) ) )  e. 
Fin )
7 elfznn 10771 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
87adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
9 vmacl 20304 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
108, 9syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  RR )
1110recnd 8815 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  CC )
12 elfznn 10771 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
1312adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
14 vmacl 20304 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
1513, 14syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  RR )
1615recnd 8815 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  CC )
176, 11, 16fsummulc2 12197 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
187nnrpd 10342 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
19 rpdivcl 10329 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
2018, 19sylan2 462 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
2120rpred 10343 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
22 chpval 20308 . . . . . . . . . . . . . . 15  |-  ( ( x  /  d )  e.  RR  ->  (ψ `  ( x  /  d
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )
2321, 22syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  d ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
)
2423oveq2d 5794 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  =  ( (Λ `  d
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
) )
2513nncnd 9716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
267ad2antlr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  NN )
2726nncnd 9716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
2826nnne0d 9744 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
2925, 27, 28divcan3d 9495 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
d  x.  m )  /  d )  =  m )
3029fveq2d 5448 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  (
( d  x.  m
)  /  d ) )  =  (Λ `  m
) )
3130oveq2d 5794 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) )  =  ( (Λ `  d
)  x.  (Λ `  m
) ) )
3231sumeq2dv 12127 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( (Λ `  d
)  x.  (Λ `  (
( d  x.  m
)  /  d ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
3317, 24, 323eqtr4d 2298 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
3433sumeq2dv 12127 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
355, 34syl5eq 2300 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
36 oveq1 5785 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  (
n  /  d )  =  ( ( d  x.  m )  / 
d ) )
3736fveq2d 5448 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (Λ `  ( n  /  d
) )  =  (Λ `  ( ( d  x.  m )  /  d
) ) )
3837oveq2d 5794 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
(Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) ) )
39 rpre 10313 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
40 ssrab2 3219 . . . . . . . . . . . . . . . . 17  |-  { y  e.  NN  |  y 
||  n }  C_  NN
41 simprr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  { y  e.  NN  |  y 
||  n } )
4240, 41sseldi 3139 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
4342anassrs 632 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  d  e.  NN )
4443, 9syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  d
)  e.  RR )
45 elfznn 10771 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
4645adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
47 dvdsdivcl 20369 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  d  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  d )  e.  { y  e.  NN  |  y  ||  n } )
4846, 47sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e. 
{ y  e.  NN  |  y  ||  n }
)
4940, 48sseldi 3139 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e.  NN )
50 vmacl 20304 . . . . . . . . . . . . . . 15  |-  ( ( n  /  d )  e.  NN  ->  (Λ `  ( n  /  d
) )  e.  RR )
5149, 50syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  (
n  /  d ) )  e.  RR )
5244, 51remulcld 8817 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  RR )
5352recnd 8815 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  CC )
5453anasss 631 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
5538, 39, 54dvdsflsumcom 20376 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
5635, 55eqtr4d 2291 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) ) )
5756oveq1d 5793 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
58 fzfid 10987 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
59 vmacl 20304 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6046, 59syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6160recnd 8815 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6245nnrpd 10342 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
63 rpdivcl 10329 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
6462, 63sylan2 462 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
6564rpred 10343 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
66 chpcl 20310 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
6765, 66syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
6867recnd 8815 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  CC )
6961, 68mulcld 8809 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  CC )
7046nnrpd 10342 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
71 relogcl 19880 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
7270, 71syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
7372recnd 8815 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
7461, 73mulcld 8809 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
7558, 69, 74fsumadd 12162 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) ) )
76 fzfid 10987 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... n )  e. 
Fin )
77 sgmss 20292 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
7846, 77syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
79 ssfi 7037 . . . . . . . . . . . 12  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
8076, 78, 79syl2anc 645 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
8180, 52fsumrecl 12158 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  RR )
8281recnd 8815 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
8358, 82, 74fsumadd 12162 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8457, 75, 833eqtr4d 2298 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
8573, 68addcomd 8968 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) )  =  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) )
8685oveq2d 5794 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( (Λ `  n
)  x.  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) ) )
8761, 68, 73adddid 8813 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
(ψ `  ( x  /  n ) )  +  ( log `  n
) ) )  =  ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8886, 87eqtrd 2288 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8988sumeq2dv 12127 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
90 logsqvma2 20640 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9146, 90syl 17 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9291sumeq2dv 12127 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
9384, 89, 923eqtr4d 2298 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( log `  (
n  /  d ) ) ^ 2 ) ) )
9436fveq2d 5448 . . . . . . . . 9  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( n  / 
d ) )  =  ( log `  (
( d  x.  m
)  /  d ) ) )
9594oveq1d 5793 . . . . . . . 8  |-  ( n  =  ( d  x.  m )  ->  (
( log `  (
n  /  d ) ) ^ 2 )  =  ( ( log `  ( ( d  x.  m )  /  d
) ) ^ 2 ) )
9695oveq2d 5794 . . . . . . 7  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( log `  ( n  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) ) )
97 mucl 20327 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
9842, 97syl 17 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
9998zcnd 10071 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
10062ad2antrl 711 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  ->  n  e.  RR+ )
10142nnrpd 10342 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  RR+ )
102100, 101rpdivcld 10360 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( n  /  d
)  e.  RR+ )
103 relogcl 19880 . . . . . . . . . . 11  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  RR )
104103recnd 8815 . . . . . . . . . 10  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  CC )
105102, 104syl 17 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( log `  (
n  /  d ) )  e.  CC )
106105sqcld 11195 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( log `  (
n  /  d ) ) ^ 2 )  e.  CC )
10799, 106mulcld 8809 . . . . . . 7  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  e.  CC )
10896, 39, 107dvdsflsumcom 20376 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) ) )
10929fveq2d 5448 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( log `  ( ( d  x.  m )  /  d
) )  =  ( log `  m ) )
110109oveq1d 5793 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  ( ( d  x.  m )  / 
d ) ) ^
2 )  =  ( ( log `  m
) ^ 2 ) )
111110oveq2d 5794 . . . . . . . 8  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  ( ( log `  m ) ^ 2 ) ) )
112111sumeq2dv 12127 . . . . . . 7  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  m
) ^ 2 ) ) )
113112sumeq2dv 12127 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
11493, 108, 1133eqtrd 2292 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
115114oveq1d 5793 . . . 4  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x ) )
116115oveq1d 5793 . . 3  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
117116mpteq2ia 4062 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
118 eqid 2256 . . 3  |-  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)  =  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)
119118selberglem2 20643 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
120117, 119eqeltri 2326 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2520    C_ wss 3113   class class class wbr 3983    e. cmpt 4037   ` cfv 4659  (class class class)co 5778   Fincfn 6817   CCcc 8689   RRcr 8690   1c1 8692    + caddc 8694    x. cmul 8696    - cmin 8991    / cdiv 9377   NNcn 9700   2c2 9749   ZZcz 9977   RR+crp 10307   ...cfz 10734   |_cfl 10876   ^cexp 11056   O ( 1 )co1 11911   sum_csu 12109    || cdivides 12479   logclog 19860  Λcvma 20277  ψcchp 20278   mmucmu 20280
This theorem is referenced by:  selbergb  20646  selberg2  20648  selbergs  20671
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-disj 3954  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ioc 10613  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-mod 10926  df-seq 10999  df-exp 11057  df-fac 11241  df-bc 11268  df-hash 11290  df-shft 11513  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-limsup 11896  df-clim 11913  df-rlim 11914  df-o1 11915  df-lo1 11916  df-sum 12110  df-ef 12297  df-e 12298  df-sin 12299  df-cos 12300  df-pi 12302  df-divides 12480  df-gcd 12634  df-prime 12707  df-pc 12838  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-cmp 17062  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165  df-log 19862  df-cxp 19863  df-em 20235  df-vma 20283  df-chp 20284  df-mu 20286
  Copyright terms: Public domain W3C validator