MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Unicode version

Theorem selberg 20697
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that  sum_
n  <_  x , Λ ( n ) log n  +  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n )  =  2 x log x  +  O
( x ). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Distinct variable group:    x, n

Proof of Theorem selberg
Dummy variables  d  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (Λ `  n )  =  (Λ `  d ) )
2 oveq2 5866 . . . . . . . . . . . . . 14  |-  ( n  =  d  ->  (
x  /  n )  =  ( x  / 
d ) )
32fveq2d 5529 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (ψ `  ( x  /  n
) )  =  (ψ `  ( x  /  d
) ) )
41, 3oveq12d 5876 . . . . . . . . . . . 12  |-  ( n  =  d  ->  (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  =  ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )
54cbvsumv 12169 . . . . . . . . . . 11  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )
6 fzfid 11035 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  d
) ) )  e. 
Fin )
7 elfznn 10819 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
87adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
9 vmacl 20356 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
108, 9syl 15 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  RR )
1110recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  CC )
12 elfznn 10819 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
1312adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
14 vmacl 20356 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
1513, 14syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  RR )
1615recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  CC )
176, 11, 16fsummulc2 12246 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
187nnrpd 10389 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
19 rpdivcl 10376 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
2018, 19sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
2120rpred 10390 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
22 chpval 20360 . . . . . . . . . . . . . . 15  |-  ( ( x  /  d )  e.  RR  ->  (ψ `  ( x  /  d
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )
2321, 22syl 15 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  d ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
)
2423oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  =  ( (Λ `  d
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
) )
2513nncnd 9762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
267ad2antlr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  NN )
2726nncnd 9762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
2826nnne0d 9790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
2925, 27, 28divcan3d 9541 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
d  x.  m )  /  d )  =  m )
3029fveq2d 5529 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  (
( d  x.  m
)  /  d ) )  =  (Λ `  m
) )
3130oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) )  =  ( (Λ `  d
)  x.  (Λ `  m
) ) )
3231sumeq2dv 12176 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( (Λ `  d
)  x.  (Λ `  (
( d  x.  m
)  /  d ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
3317, 24, 323eqtr4d 2325 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
3433sumeq2dv 12176 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
355, 34syl5eq 2327 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
36 oveq1 5865 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  (
n  /  d )  =  ( ( d  x.  m )  / 
d ) )
3736fveq2d 5529 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (Λ `  ( n  /  d
) )  =  (Λ `  ( ( d  x.  m )  /  d
) ) )
3837oveq2d 5874 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
(Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) ) )
39 rpre 10360 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
40 ssrab2 3258 . . . . . . . . . . . . . . . . 17  |-  { y  e.  NN  |  y 
||  n }  C_  NN
41 simprr 733 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  { y  e.  NN  |  y 
||  n } )
4240, 41sseldi 3178 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
4342anassrs 629 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  d  e.  NN )
4443, 9syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  d
)  e.  RR )
45 elfznn 10819 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
4645adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
47 dvdsdivcl 20421 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  d  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  d )  e.  { y  e.  NN  |  y  ||  n } )
4846, 47sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e. 
{ y  e.  NN  |  y  ||  n }
)
4940, 48sseldi 3178 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e.  NN )
50 vmacl 20356 . . . . . . . . . . . . . . 15  |-  ( ( n  /  d )  e.  NN  ->  (Λ `  ( n  /  d
) )  e.  RR )
5149, 50syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  (
n  /  d ) )  e.  RR )
5244, 51remulcld 8863 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  RR )
5352recnd 8861 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  CC )
5453anasss 628 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
5538, 39, 54dvdsflsumcom 20428 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
5635, 55eqtr4d 2318 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) ) )
5756oveq1d 5873 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
58 fzfid 11035 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
59 vmacl 20356 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6046, 59syl 15 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6160recnd 8861 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6245nnrpd 10389 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
63 rpdivcl 10376 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
6462, 63sylan2 460 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
6564rpred 10390 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
66 chpcl 20362 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
6765, 66syl 15 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
6867recnd 8861 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  CC )
6961, 68mulcld 8855 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  CC )
7046nnrpd 10389 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
71 relogcl 19932 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
7270, 71syl 15 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
7372recnd 8861 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
7461, 73mulcld 8855 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
7558, 69, 74fsumadd 12211 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) ) )
76 fzfid 11035 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... n )  e. 
Fin )
77 sgmss 20344 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
7846, 77syl 15 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
79 ssfi 7083 . . . . . . . . . . . 12  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
8076, 78, 79syl2anc 642 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
8180, 52fsumrecl 12207 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  RR )
8281recnd 8861 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
8358, 82, 74fsumadd 12211 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8457, 75, 833eqtr4d 2325 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
8573, 68addcomd 9014 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) )  =  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) )
8685oveq2d 5874 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( (Λ `  n
)  x.  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) ) )
8761, 68, 73adddid 8859 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
(ψ `  ( x  /  n ) )  +  ( log `  n
) ) )  =  ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8886, 87eqtrd 2315 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8988sumeq2dv 12176 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
90 logsqvma2 20692 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9146, 90syl 15 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9291sumeq2dv 12176 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
9384, 89, 923eqtr4d 2325 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( log `  (
n  /  d ) ) ^ 2 ) ) )
9436fveq2d 5529 . . . . . . . . 9  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( n  / 
d ) )  =  ( log `  (
( d  x.  m
)  /  d ) ) )
9594oveq1d 5873 . . . . . . . 8  |-  ( n  =  ( d  x.  m )  ->  (
( log `  (
n  /  d ) ) ^ 2 )  =  ( ( log `  ( ( d  x.  m )  /  d
) ) ^ 2 ) )
9695oveq2d 5874 . . . . . . 7  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( log `  ( n  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) ) )
97 mucl 20379 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
9842, 97syl 15 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
9998zcnd 10118 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
10062ad2antrl 708 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  ->  n  e.  RR+ )
10142nnrpd 10389 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  RR+ )
102100, 101rpdivcld 10407 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( n  /  d
)  e.  RR+ )
103 relogcl 19932 . . . . . . . . . . 11  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  RR )
104103recnd 8861 . . . . . . . . . 10  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  CC )
105102, 104syl 15 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( log `  (
n  /  d ) )  e.  CC )
106105sqcld 11243 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( log `  (
n  /  d ) ) ^ 2 )  e.  CC )
10799, 106mulcld 8855 . . . . . . 7  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  e.  CC )
10896, 39, 107dvdsflsumcom 20428 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) ) )
10929fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( log `  ( ( d  x.  m )  /  d
) )  =  ( log `  m ) )
110109oveq1d 5873 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  ( ( d  x.  m )  / 
d ) ) ^
2 )  =  ( ( log `  m
) ^ 2 ) )
111110oveq2d 5874 . . . . . . . 8  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  ( ( log `  m ) ^ 2 ) ) )
112111sumeq2dv 12176 . . . . . . 7  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  m
) ^ 2 ) ) )
113112sumeq2dv 12176 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
11493, 108, 1133eqtrd 2319 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
115114oveq1d 5873 . . . 4  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x ) )
116115oveq1d 5873 . . 3  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
117116mpteq2ia 4102 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
118 eqid 2283 . . 3  |-  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)  =  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)
119118selberglem2 20695 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
120117, 119eqeltri 2353 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   RR+crp 10354   ...cfz 10782   |_cfl 10924   ^cexp 11104   O ( 1 )co1 11960   sum_csu 12158    || cdivides 12531   logclog 19912  Λcvma 20329  ψcchp 20330   mmucmu 20332
This theorem is referenced by:  selbergb  20698  selberg2  20700  selbergs  20723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-o1 11964  df-lo1 11965  df-sum 12159  df-ef 12349  df-e 12350  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915  df-em 20287  df-vma 20335  df-chp 20336  df-mu 20338
  Copyright terms: Public domain W3C validator