MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2 Unicode version

Theorem selberg2 20694
Description: Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2  |-  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Distinct variable group:    x, n

Proof of Theorem selberg2
StepHypRef Expression
1 reex 8823 . . . . . . 7  |-  RR  e.  _V
2 rpssre 10359 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4160 . . . . . 6  |-  RR+  e.  _V
43a1i 12 . . . . 5  |-  (  T. 
->  RR+  e.  _V )
5 ovex 5844 . . . . . 6  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  _V
65a1i 12 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  _V )
7 ovex 5844 . . . . . 6  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x )  e.  _V
87a1i 12 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x )  e.  _V )
9 eqidd 2285 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) ) )
10 eqidd 2285 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) ) )
114, 6, 8, 9, 10offval2 6056 . . . 4  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  -  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) ) )
1211trud 1316 . . 3  |-  ( ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  -  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) )
13 fzfid 11029 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
14 elfznn 10813 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1514adantl 454 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
16 vmacl 20350 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1715, 16syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
1817recnd 8856 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
1915nnrpd 10384 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
20 relogcl 19926 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
2119, 20syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
2221recnd 8856 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
23 rpre 10355 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  RR )
24 nndivre 9776 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  /  n
)  e.  RR )
2523, 14, 24syl2an 465 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
26 chpcl 20356 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
2725, 26syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
2827recnd 8856 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  CC )
2922, 28addcld 8849 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) )  e.  CC )
3018, 29mulcld 8850 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  e.  CC )
3113, 30fsumcl 12200 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  CC )
32 rpcn 10357 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  CC )
33 rpne0 10364 . . . . . . 7  |-  ( x  e.  RR+  ->  x  =/=  0 )
3431, 32, 33divcld 9531 . . . . . 6  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  CC )
35 2cn 9811 . . . . . . 7  |-  2  e.  CC
36 relogcl 19926 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
3736recnd 8856 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
38 mulcl 8816 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( log `  x )  e.  CC )  -> 
( 2  x.  ( log `  x ) )  e.  CC )
3935, 37, 38sylancr 646 . . . . . 6  |-  ( x  e.  RR+  ->  ( 2  x.  ( log `  x
) )  e.  CC )
4018, 22mulcld 8850 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
4113, 40fsumcl 12200 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  e.  CC )
42 chpcl 20356 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
4323, 42syl 17 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
4443recnd 8856 . . . . . . . . 9  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  CC )
4544, 37mulcld 8850 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  x ) )  e.  CC )
4641, 45subcld 9152 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  e.  CC )
4746, 32, 33divcld 9531 . . . . . 6  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x )  e.  CC )
4834, 39, 47sub32d 9184 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  -  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  -  ( 2  x.  ( log `  x ) ) ) )
49 rpcnne0 10366 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
50 divsubdir 9451 . . . . . . . 8  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  e.  CC  /\  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  -> 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) ) )
5131, 46, 49, 50syl3anc 1184 . . . . . . 7  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) ) )
5218, 22, 28adddid 8854 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  +  ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) ) )
5352sumeq2dv 12170 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  +  ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) ) )
5418, 28mulcld 8850 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  CC )
5513, 40, 54fsumadd 12205 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  +  ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) )
5653, 55eqtrd 2316 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) )
5756oveq1d 5834 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) ) )
5813, 54fsumcl 12200 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  e.  CC )
5941, 58, 45pnncand 9191 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (ψ `  x
)  x.  ( log `  x ) ) ) )
6058, 45addcomd 9009 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  +  ( (ψ `  x
)  x.  ( log `  x ) ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) ) )
6157, 59, 603eqtrd 2320 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) ) )
6261oveq1d 5834 . . . . . . 7  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )  /  x )  =  ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )
6351, 62eqtr3d 2318 . . . . . 6  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )
6463oveq1d 5834 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
6548, 64eqtrd 2316 . . . 4  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  -  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
6665mpteq2ia 4103 . . 3  |-  ( x  e.  RR+  |->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  -  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
6712, 66eqtri 2304 . 2  |-  ( ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
68 selberg 20691 . . 3  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
69 selberg2lem 20693 . . 3  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O ( 1 )
70 o1sub 12083 . . 3  |-  ( ( ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  e.  O ( 1 )  /\  (
x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O ( 1 ) )  ->  ( (
x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) )  e.  O
( 1 ) )
7168, 69, 70mp2an 655 . 2  |-  ( ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  o F  -  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  /  x ) ) )  e.  O
( 1 )
7267, 71eqeltrri 2355 1  |-  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    T. wtru 1309    = wceq 1624    e. wcel 1685    =/= wne 2447   _Vcvv 2789    e. cmpt 4078   ` cfv 5221  (class class class)co 5819    o Fcof 6037   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   RR+crp 10349   ...cfz 10776   |_cfl 10918   O ( 1 )co1 11954   sum_csu 12152   logclog 19906  Λcvma 20323  ψcchp 20324
This theorem is referenced by:  selberg2b  20695  selberg3  20702  selberg4  20704  selbergr  20711
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-o1 11958  df-lo1 11959  df-sum 12153  df-ef 12343  df-e 12344  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-prm 12753  df-pc 12884  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-cxp 19909  df-em 20281  df-cht 20328  df-vma 20329  df-chp 20330  df-ppi 20331  df-mu 20332
  Copyright terms: Public domain W3C validator