MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2lem Unicode version

Theorem selberg2lem 20695
Description: Lemma for selberg2 20696. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2lem  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O ( 1 )
Distinct variable group:    x, n

Proof of Theorem selberg2lem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 rpre 10356 . . . . . . . . 9  |-  ( x  e.  RR+  ->  x  e.  RR )
2 chpcl 20358 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
31, 2syl 15 . . . . . . . 8  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
43recnd 8857 . . . . . . 7  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  CC )
5 rprege0 10364 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
6 flge0nn0 10944 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
75, 6syl 15 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e. 
NN0 )
8 nn0p1nn 9999 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
97, 8syl 15 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  NN )
109nnrpd 10385 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  RR+ )
1110relogcld 19970 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  e.  RR )
1211recnd 8857 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  e.  CC )
13 relogcl 19928 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
1413recnd 8857 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
1512, 14subcld 9153 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC )
164, 15mulcld 8851 . . . . . 6  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  CC )
17 fzfid 11031 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
18 elfznn 10815 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1918adantl 452 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2019nnrpd 10385 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
21 1rp 10354 . . . . . . . . . . . . 13  |-  1  e.  RR+
22 rpaddcl 10370 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR+  /\  1  e.  RR+ )  ->  (
n  +  1 )  e.  RR+ )
2321, 22mpan2 652 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( n  +  1 )  e.  RR+ )
2423relogcld 19970 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( log `  ( n  +  1 ) )  e.  RR )
25 relogcl 19928 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
2624, 25resubcld 9207 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  e.  RR )
27 rpre 10356 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
28 chpcl 20358 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  (ψ `  n )  e.  RR )
2927, 28syl 15 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  (ψ `  n )  e.  RR )
3026, 29remulcld 8859 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  RR )
3130recnd 8857 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
3220, 31syl 15 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
3317, 32fsumcl 12202 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  e.  CC )
34 rpcnne0 10367 . . . . . 6  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
35 divsubdir 9452 . . . . . 6  |-  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  e.  CC  /\  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
3616, 33, 34, 35syl3anc 1182 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
374, 12mulcld 8851 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  e.  CC )
384, 14mulcld 8851 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  x ) )  e.  CC )
3937, 38, 33sub32d 9185 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  =  ( ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )
404, 12, 14subdid 9231 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) ) )
4140oveq1d 5835 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
42 fveq2 5486 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( log `  m )  =  ( log `  n
) )
43 oveq1 5827 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
4443fveq2d 5490 . . . . . . . . . . 11  |-  ( m  =  n  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( n  -  1 ) ) )
4542, 44jca 518 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( log `  m
)  =  ( log `  n )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( n  -  1 ) ) ) )
46 fveq2 5486 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  ( log `  m )  =  ( log `  (
n  +  1 ) ) )
47 oveq1 5827 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  (
m  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
4847fveq2d 5490 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) )
4946, 48jca 518 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
( log `  m
)  =  ( log `  ( n  +  1 ) )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) )
50 fveq2 5486 . . . . . . . . . . . 12  |-  ( m  =  1  ->  ( log `  m )  =  ( log `  1
) )
51 log1 19935 . . . . . . . . . . . 12  |-  ( log `  1 )  =  0
5250, 51syl6eq 2332 . . . . . . . . . . 11  |-  ( m  =  1  ->  ( log `  m )  =  0 )
53 oveq1 5827 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
54 1m1e0 9810 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
5553, 54syl6eq 2332 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
5655fveq2d 5490 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  0 ) )
57 2pos 9824 . . . . . . . . . . . . 13  |-  0  <  2
58 0re 8834 . . . . . . . . . . . . . 14  |-  0  e.  RR
59 chpeq0 20443 . . . . . . . . . . . . . 14  |-  ( 0  e.  RR  ->  (
(ψ `  0 )  =  0  <->  0  <  2 ) )
6058, 59ax-mp 8 . . . . . . . . . . . . 13  |-  ( (ψ `  0 )  =  0  <->  0  <  2
)
6157, 60mpbir 200 . . . . . . . . . . . 12  |-  (ψ ` 
0 )  =  0
6256, 61syl6eq 2332 . . . . . . . . . . 11  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  0 )
6352, 62jca 518 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( log `  m
)  =  0  /\  (ψ `  ( m  -  1 ) )  =  0 ) )
64 fveq2 5486 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  ( log `  m )  =  ( log `  (
( |_ `  x
)  +  1 ) ) )
65 oveq1 5827 . . . . . . . . . . . 12  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
m  -  1 )  =  ( ( ( |_ `  x )  +  1 )  - 
1 ) )
6665fveq2d 5490 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )
6764, 66jca 518 . . . . . . . . . 10  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
( log `  m
)  =  ( log `  ( ( |_ `  x )  +  1 ) )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) ) )
68 nnuz 10259 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
699, 68syl6eleq 2374 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  ( ZZ>= `  1 )
)
70 elfznn 10815 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( ( |_ `  x )  +  1 ) )  ->  m  e.  NN )
7170adantl 452 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  NN )
7271nnrpd 10385 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  RR+ )
7372relogcld 19970 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  ( log `  m )  e.  RR )
7473recnd 8857 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  ( log `  m )  e.  CC )
7571nnred 9757 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  RR )
76 peano2rem 9109 . . . . . . . . . . . . 13  |-  ( m  e.  RR  ->  (
m  -  1 )  e.  RR )
7775, 76syl 15 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (
m  -  1 )  e.  RR )
78 chpcl 20358 . . . . . . . . . . . 12  |-  ( ( m  -  1 )  e.  RR  ->  (ψ `  ( m  -  1 ) )  e.  RR )
7977, 78syl 15 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (ψ `  ( m  -  1 ) )  e.  RR )
8079recnd 8857 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (ψ `  ( m  -  1 ) )  e.  CC )
8145, 49, 63, 67, 69, 74, 80fsumparts 12260 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( log `  n
)  x.  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) ) )  =  ( ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x
)  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  x.  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) ) )
827nn0zd 10111 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  ZZ )
83 fzval3 10907 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ZZ  ->  (
1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
8482, 83syl 15 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
8584eqcomd 2289 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 1..^ ( ( |_ `  x )  +  1 ) )  =  ( 1 ... ( |_
`  x ) ) )
8619nncnd 9758 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
87 ax-1cn 8791 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
88 pncan 9053 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
8986, 87, 88sylancl 643 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  +  1 )  -  1 )  =  n )
90 npcan 9056 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
9186, 87, 90sylancl 643 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  -  1 )  +  1 )  =  n )
9289, 91eqtr4d 2319 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  +  1 )  -  1 )  =  ( ( n  - 
1 )  +  1 ) )
9392fveq2d 5490 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  (ψ `  ( ( n  - 
1 )  +  1 ) ) )
94 nnm1nn0 10001 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
9519, 94syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e. 
NN0 )
96 chpp1 20389 . . . . . . . . . . . . . . . 16  |-  ( ( n  -  1 )  e.  NN0  ->  (ψ `  ( ( n  - 
1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  (
( n  -  1 )  +  1 ) ) ) )
9795, 96syl 15 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  -  1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) ) )
9891fveq2d 5490 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  (
( n  -  1 )  +  1 ) )  =  (Λ `  n
) )
9998oveq2d 5836 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( n  -  1 ) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) )  =  ( (ψ `  (
n  -  1 ) )  +  (Λ `  n
) ) )
10093, 97, 993eqtrd 2320 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  n ) ) )
101100oveq1d 5835 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  ( ( (ψ `  ( n  -  1
) )  +  (Λ `  n ) )  -  (ψ `  ( n  - 
1 ) ) ) )
10295nn0red 10015 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  RR )
103 chpcl 20358 . . . . . . . . . . . . . . . 16  |-  ( ( n  -  1 )  e.  RR  ->  (ψ `  ( n  -  1 ) )  e.  RR )
104102, 103syl 15 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  RR )
105104recnd 8857 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  CC )
106 vmacl 20352 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
10719, 106syl 15 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
108107recnd 8857 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
109105, 108pncan2d 9155 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(ψ `  ( n  -  1 ) )  +  (Λ `  n
) )  -  (ψ `  ( n  -  1 ) ) )  =  (Λ `  n )
)
110101, 109eqtrd 2316 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  (Λ `  n )
)
111110oveq2d 5836 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  (ψ `  ( n  -  1
) ) ) )  =  ( ( log `  n )  x.  (Λ `  n ) ) )
11220relogcld 19970 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
113112recnd 8857 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
114108, 113mulcomd 8852 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  =  ( ( log `  n )  x.  (Λ `  n ) ) )
115111, 114eqtr4d 2319 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  (ψ `  ( n  -  1
) ) ) )  =  ( (Λ `  n
)  x.  ( log `  n ) ) )
11685, 115sumeq12rdv 12176 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( log `  n
)  x.  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) )
1177nn0cnd 10016 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  CC )
118 pncan 9053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( |_ `  x
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  x )  +  1 )  -  1 )  =  ( |_
`  x ) )
119117, 87, 118sylancl 643 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  +  1 )  -  1 )  =  ( |_ `  x
) )
120119fveq2d 5490 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  ( |_ `  x
) ) )
121 chpfl 20384 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  (ψ `  ( |_ `  x
) )  =  (ψ `  x ) )
1221, 121syl 15 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  (ψ `  ( |_ `  x ) )  =  (ψ `  x ) )
123120, 122eqtrd 2316 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  x ) )
124123oveq2d 5836 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  x ) ) )
12512, 4mulcomd 8852 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  x
) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
126124, 125eqtrd 2316 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
127 0cn 8827 . . . . . . . . . . . . . 14  |-  0  e.  CC
128127mul01i 8998 . . . . . . . . . . . . 13  |-  ( 0  x.  0 )  =  0
129128a1i 10 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( 0  x.  0 )  =  0 )
130126, 129oveq12d 5838 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  =  ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  - 
0 ) )
13137subid1d 9142 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) )  -  0 )  =  ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
132130, 131eqtrd 2316 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
13389fveq2d 5490 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  (ψ `  n ) )
134133oveq2d 5836 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  ( (
n  +  1 )  -  1 ) ) )  =  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )
13585, 134sumeq12rdv 12176 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  (
( n  +  1 )  -  1 ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )
136132, 135oveq12d 5838 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x
)  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  x.  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
13781, 116, 1363eqtr3d 2324 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
138137oveq1d 5835 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  =  ( ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) ) )
13939, 41, 1383eqtr4d 2326 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )
140139oveq1d 5835 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
141 div23 9439 . . . . . . 7  |-  ( ( (ψ `  x )  e.  CC  /\  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
(ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  /  x )  =  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )
1424, 15, 34, 141syl3anc 1182 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  /  x )  =  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )
143142oveq1d 5835 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) )  =  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
14436, 140, 1433eqtr3rd 2325 . . . 4  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
145144mpteq2ia 4103 . . 3  |-  ( x  e.  RR+  |->  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
146 ovex 5845 . . . . 5  |-  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  _V
147146a1i 10 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  _V )
148 ovex 5845 . . . . 5  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x )  e.  _V
149148a1i 10 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x )  e.  _V )
150 reex 8824 . . . . . . . 8  |-  RR  e.  _V
151 rpssre 10360 . . . . . . . 8  |-  RR+  C_  RR
152150, 151ssexi 4160 . . . . . . 7  |-  RR+  e.  _V
153152a1i 10 . . . . . 6  |-  (  T. 
->  RR+  e.  _V )
154 ovex 5845 . . . . . . 7  |-  ( (ψ `  x )  /  x
)  e.  _V
155154a1i 10 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  _V )
15615adantl 452 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC )
157 eqidd 2285 . . . . . 6  |-  (  T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  =  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) ) )
158 eqidd 2285 . . . . . 6  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  =  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )
159153, 155, 156, 157, 158offval2 6057 . . . . 5  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  o F  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) ) ) )
160 chpo1ub 20625 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O
( 1 )
16158a1i 10 . . . . . . . 8  |-  (  T. 
->  0  e.  RR )
162 1re 8833 . . . . . . . . 9  |-  1  e.  RR
163162a1i 10 . . . . . . . 8  |-  (  T. 
->  1  e.  RR )
164 divrcnv 12307 . . . . . . . . 9  |-  ( 1  e.  CC  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0 )
16587, 164mp1i 11 . . . . . . . 8  |-  (  T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  ~~> r  0 )
166 rpreccl 10373 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
167166rpred 10386 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR )
168167adantl 452 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR )
16911, 13resubcld 9207 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  RR )
170169adantl 452 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  RR )
171 rpaddcl 10370 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  e.  RR+ )  ->  (
x  +  1 )  e.  RR+ )
17221, 171mpan2 652 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  +  1 )  e.  RR+ )
173172relogcld 19970 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( x  +  1 ) )  e.  RR )
174173, 13resubcld 9207 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( x  +  1 ) )  -  ( log `  x
) )  e.  RR )
1757nn0red 10015 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  RR )
176162a1i 10 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  1  e.  RR )
177 flle 10927 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
1781, 177syl 15 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( |_
`  x )  <_  x )
179175, 1, 176, 178leadd1dd 9382 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  <_ 
( x  +  1 ) )
18010, 172logled 19974 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  +  1 )  <_  ( x  + 
1 )  <->  ( log `  ( ( |_ `  x )  +  1 ) )  <_  ( log `  ( x  + 
1 ) ) ) )
181179, 180mpbid 201 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  <_  ( log `  ( x  + 
1 ) ) )
18211, 173, 13, 181lesub1dd 9384 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  <_  (
( log `  (
x  +  1 ) )  -  ( log `  x ) ) )
183 logdifbnd 20284 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( x  +  1 ) )  -  ( log `  x
) )  <_  (
1  /  x ) )
184169, 174, 167, 182, 183letrd 8969 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  <_  (
1  /  x ) )
185184ad2antrl 708 . . . . . . . 8  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) )  <_ 
( 1  /  x
) )
186 fllep1 10929 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
1871, 186syl 15 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  <_ 
( ( |_ `  x )  +  1 ) )
188 logleb 19953 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  (
( |_ `  x
)  +  1 )  e.  RR+ )  ->  (
x  <_  ( ( |_ `  x )  +  1 )  <->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
18910, 188mpdan 649 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  <_  ( ( |_
`  x )  +  1 )  <->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
190187, 189mpbid 201 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) )
19111, 13subge0d 9358 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 0  <_  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) )  <-> 
( log `  x
)  <_  ( log `  ( ( |_ `  x )  +  1 ) ) ) )
192190, 191mpbird 223 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )
193192ad2antrl 708 . . . . . . . 8  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( log `  ( ( |_
`  x )  +  1 ) )  -  ( log `  x ) ) )
194161, 163, 165, 168, 170, 185, 193rlimsqz2 12120 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  ~~> r  0 )
195 rlimo1 12086 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  ~~> r  0  ->  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  e.  O ( 1 ) )
196194, 195syl 15 . . . . . 6  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  O ( 1 ) )
197 o1mul 12084 . . . . . 6  |-  ( ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O ( 1 )  /\  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  e.  O ( 1 ) )  -> 
( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  o F  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  e.  O
( 1 ) )
198160, 196, 197sylancr 644 . . . . 5  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  o F  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  e.  O
( 1 ) )
199159, 198eqeltrrd 2359 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )  e.  O ( 1 ) )
200 nnrp 10359 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  RR+ )
201200ssriv 3185 . . . . . . . 8  |-  NN  C_  RR+
202201a1i 10 . . . . . . 7  |-  (  T. 
->  NN  C_  RR+ )
203202sselda 3181 . . . . . 6  |-  ( (  T.  /\  n  e.  NN )  ->  n  e.  RR+ )
204203, 31syl 15 . . . . 5  |-  ( (  T.  /\  n  e.  NN )  ->  (
( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
205 chpo1ub 20625 . . . . . . . 8  |-  ( n  e.  RR+  |->  ( (ψ `  n )  /  n
) )  e.  O
( 1 )
206205a1i 10 . . . . . . 7  |-  (  T. 
->  ( n  e.  RR+  |->  ( (ψ `  n )  /  n ) )  e.  O ( 1 ) )
207 rerpdivcl 10377 . . . . . . . . 9  |-  ( ( (ψ `  n )  e.  RR  /\  n  e.  RR+ )  ->  ( (ψ `  n )  /  n
)  e.  RR )
20829, 207mpancom 650 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( (ψ `  n )  /  n
)  e.  RR )
209208adantl 452 . . . . . . 7  |-  ( (  T.  /\  n  e.  RR+ )  ->  ( (ψ `  n )  /  n
)  e.  RR )
21031adantl 452 . . . . . . 7  |-  ( (  T.  /\  n  e.  RR+ )  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
211 rpreccl 10373 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR+ )
212211rpred 10386 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR )
213 chpge0 20360 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  0  <_  (ψ `  n )
)
21427, 213syl 15 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  <_ 
(ψ `  n )
)
215 logdifbnd 20284 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  <_  (
1  /  n ) )
21626, 212, 29, 214, 215lemul1ad 9692 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  <_  ( (
1  /  n )  x.  (ψ `  n
) ) )
21727lep1d 9684 . . . . . . . . . . . . 13  |-  ( n  e.  RR+  ->  n  <_ 
( n  +  1 ) )
218 logleb 19953 . . . . . . . . . . . . . 14  |-  ( ( n  e.  RR+  /\  (
n  +  1 )  e.  RR+ )  ->  (
n  <_  ( n  +  1 )  <->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) ) )
21923, 218mpdan 649 . . . . . . . . . . . . 13  |-  ( n  e.  RR+  ->  ( n  <_  ( n  + 
1 )  <->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) ) )
220217, 219mpbid 201 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) )
22124, 25subge0d 9358 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( 0  <_  ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  <-> 
( log `  n
)  <_  ( log `  ( n  +  1 ) ) ) )
222220, 221mpbird 223 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_ 
( ( log `  (
n  +  1 ) )  -  ( log `  n ) ) )
22326, 29, 222, 214mulge0d 9345 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  <_ 
( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )
22430, 223absidd 11901 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( abs `  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )
225 rpregt0 10363 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <  n ) )
226 divge0 9621 . . . . . . . . . . . 12  |-  ( ( ( (ψ `  n
)  e.  RR  /\  0  <_  (ψ `  n
) )  /\  (
n  e.  RR  /\  0  <  n ) )  ->  0  <_  (
(ψ `  n )  /  n ) )
22729, 214, 225, 226syl21anc 1181 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_ 
( (ψ `  n
)  /  n ) )
228208, 227absidd 11901 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( abs `  ( (ψ `  n
)  /  n ) )  =  ( (ψ `  n )  /  n
) )
22929recnd 8857 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  (ψ `  n )  e.  CC )
230 rpcn 10358 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  CC )
231 rpne0 10365 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  =/=  0 )
232229, 230, 231divrec2d 9536 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( (ψ `  n )  /  n
)  =  ( ( 1  /  n )  x.  (ψ `  n
) ) )
233228, 232eqtrd 2316 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( abs `  ( (ψ `  n
)  /  n ) )  =  ( ( 1  /  n )  x.  (ψ `  n
) ) )
234216, 224, 2333brtr4d 4054 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( abs `  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  <_ 
( abs `  (
(ψ `  n )  /  n ) ) )
235234ad2antrl 708 . . . . . . 7  |-  ( (  T.  /\  ( n  e.  RR+  /\  1  <_  n ) )  -> 
( abs `  (
( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  <_  ( abs `  ( (ψ `  n )  /  n
) ) )
236163, 206, 209, 210, 235o1le 12122 . . . . . 6  |-  (  T. 
->  ( n  e.  RR+  |->  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  e.  O ( 1 ) )
237202, 236o1res2 12033 . . . . 5  |-  (  T. 
->  ( n  e.  NN  |->  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  e.  O ( 1 ) )
238204, 237o1fsum 12267 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  /  x
) )  e.  O
( 1 ) )
239147, 149, 199, 238o1sub2 12095 . . 3  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  /  x
) ) )  e.  O ( 1 ) )
240145, 239syl5eqelr 2369 . 2  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O ( 1 ) )
241240trud 1314 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1307    = wceq 1623    e. wcel 1685    =/= wne 2447   _Vcvv 2789    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   ` cfv 5221  (class class class)co 5820    o Fcof 6038   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    < clt 8863    <_ cle 8864    - cmin 9033    / cdiv 9419   NNcn 9742   2c2 9791   NN0cn0 9961   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350   ...cfz 10778  ..^cfzo 10866   |_cfl 10920   abscabs 11715    ~~> r crli 11955   O (
1 )co1 11956   sum_csu 12154   logclog 19908  Λcvma 20325  ψcchp 20326
This theorem is referenced by:  selberg2  20696  selberg3lem2  20703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-o1 11960  df-lo1 11961  df-sum 12155  df-ef 12345  df-e 12346  df-sin 12347  df-cos 12348  df-pi 12350  df-dvds 12528  df-gcd 12682  df-prm 12755  df-pc 12886  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-cxp 19911  df-cht 20330  df-vma 20331  df-chp 20332  df-ppi 20333
  Copyright terms: Public domain W3C validator