MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg4r Unicode version

Theorem selberg4r 21252
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of [Shapiro], p. 430. (Contributed by Mario Carneiro, 30-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
selberg4r  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 )
Distinct variable groups:    m, a, n, x    R, m, n, x
Allowed substitution hint:    R( a)

Proof of Theorem selberg4r
StepHypRef Expression
1 elioore 10935 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
21adantl 453 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
3 1rp 10605 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 11 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
54rpred 10637 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
6 eliooord 10959 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
76adantl 453 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
87simpld 446 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
95, 2, 8ltled 9210 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 10672 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
11 pntrval.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1211pntrval 21244 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
1310, 12syl 16 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x
) )
1413oveq1d 6087 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  -  x
)  x.  ( log `  x ) ) )
15 chpcl 20895 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
162, 15syl 16 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (ψ `  x )  e.  RR )
1716recnd 9103 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (ψ `  x )  e.  CC )
182recnd 9103 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  CC )
1910relogcld 20506 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR )
2019recnd 9103 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
2117, 18, 20subdird 9479 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  -  x )  x.  ( log `  x
) )  =  ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( x  x.  ( log `  x ) ) ) )
2214, 21eqtrd 2467 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) ) )
2310ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  e.  RR+ )
24 elfznn 11069 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2524adantl 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2625nnrpd 10636 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2726adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  RR+ )
2823, 27rpdivcld 10654 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  RR+ )
29 elfznn 11069 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
3029adantl 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
3130nnrpd 10636 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
3228, 31rpdivcld 10654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  RR+ )
3311pntrval 21244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  /  n
)  /  m )  e.  RR+  ->  ( R `
 ( ( x  /  n )  /  m ) )  =  ( (ψ `  (
( x  /  n
)  /  m ) )  -  ( ( x  /  n )  /  m ) ) )
3432, 33syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( R `  ( ( x  /  n )  /  m
) )  =  ( (ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) )
3534oveq2d 6088 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) )  =  ( (Λ `  m )  x.  (
(ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) ) )
36 vmacl 20889 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
3730, 36syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  RR )
3837recnd 9103 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  CC )
392adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
4039, 25nndivred 10037 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
4140adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  RR )
4241, 30nndivred 10037 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  RR )
43 chpcl 20895 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  /  n
)  /  m )  e.  RR  ->  (ψ `  ( ( x  /  n )  /  m
) )  e.  RR )
4442, 43syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (ψ `  (
( x  /  n
)  /  m ) )  e.  RR )
4544recnd 9103 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (ψ `  (
( x  /  n
)  /  m ) )  e.  CC )
4642recnd 9103 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  CC )
4738, 45, 46subdid 9478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
(ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) )  =  ( ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
4835, 47eqtrd 2467 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) )  =  ( ( (Λ `  m )  x.  (ψ `  ( (
x  /  n )  /  m ) ) )  -  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )
4948sumeq2dv 12485 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
50 fzfid 11300 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
5137, 44remulcld 9105 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  RR )
5251recnd 9103 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  CC )
5338, 46mulcld 9097 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  CC )
5450, 52, 53fsumsub 12559 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
5549, 54eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
5655oveq2d 6088 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) ) )
57 vmacl 20889 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
5825, 57syl 16 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
5958recnd 9103 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6050, 51fsumrecl 12516 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  RR )
6160recnd 9103 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  CC )
6250, 53fsumcl 12515 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  CC )
6359, 61, 62subdid 9478 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  (ψ `  ( (
x  /  n )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  =  ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
6456, 63eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) )  =  ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
6564sumeq2dv 12485 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
66 fzfid 11300 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
6758, 60remulcld 9105 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  RR )
6867recnd 9103 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  CC )
6959, 62mulcld 9097 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  CC )
7066, 68, 69fsumsub 12559 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
7165, 70eqtrd 2467 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
7271oveq2d 6088 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
73 2re 10058 . . . . . . . . . . . . 13  |-  2  e.  RR
7473a1i 11 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  RR )
752, 8rplogcld 20512 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
7674, 75rerpdivcld 10664 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
7776recnd 9103 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
7866, 67fsumrecl 12516 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  RR )
7978recnd 9103 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  CC )
8066, 69fsumcl 12515 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  CC )
8177, 79, 80subdid 9478 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
8272, 81eqtrd 2467 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
8322, 82oveq12d 6090 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
x  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) ) )
8416, 19remulcld 9105 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  RR )
8584recnd 9103 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  CC )
8618, 20mulcld 9097 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
8776, 78remulcld 9105 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  e.  RR )
8887recnd 9103 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  e.  CC )
8977, 80mulcld 9097 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  CC )
9085, 86, 88, 89sub4d 9449 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) ) )
9183, 90eqtrd 2467 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) ) )
9291oveq1d 6087 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x ) )
9384, 87resubcld 9454 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  e.  RR )
9493recnd 9103 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  e.  CC )
952, 19remulcld 9105 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR )
9637, 42remulcld 9105 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  RR )
9750, 96fsumrecl 12516 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  RR )
9858, 97remulcld 9105 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  RR )
9966, 98fsumrecl 12516 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  RR )
10076, 99remulcld 9105 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  RR )
10195, 100resubcld 9454 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  e.  RR )
102101recnd 9103 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  e.  CC )
10310rpne0d 10642 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  =/=  0 )
10494, 102, 18, 103divsubdird 9818 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) ) )
10595recnd 9103 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
10699recnd 9103 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  CC )
10777, 106mulcld 9097 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  CC )
108105, 107, 18, 103divsubdird 9818 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  /  x )  =  ( ( ( x  x.  ( log `  x
) )  /  x
)  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  /  x
) ) )
10920, 18, 103divcan3d 9784 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  /  x )  =  ( log `  x
) )
11077, 106, 18, 103divassd 9814 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )  /  x )  =  ( ( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) ) )
11198recnd 9103 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  CC )
11266, 18, 111, 103fsumdivc 12557 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) )
11341recnd 9103 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  CC )
11430nncnd 10005 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  CC )
11530nnne0d 10033 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  =/=  0 )
116113, 38, 114, 115div12d 9815 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  x.  ( (Λ `  m
)  /  m ) )  =  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )
11718adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
118117adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  e.  CC )
11925nncnd 10005 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
120119adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  CC )
12137, 30nndivred 10037 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  RR )
122121recnd 9103 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  CC )
12325nnne0d 10033 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
124123adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  =/=  0 )
125118, 120, 122, 124div32d 9802 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  x.  ( (Λ `  m
)  /  m ) )  =  ( x  x.  ( ( (Λ `  m )  /  m
)  /  n ) ) )
126116, 125eqtr3d 2469 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  =  ( x  x.  ( ( (Λ `  m )  /  m
)  /  n ) ) )
127126oveq1d 6087 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
)  =  ( ( x  x.  ( ( (Λ `  m )  /  m )  /  n
) )  /  x
) )
12825adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  NN )
129121, 128nndivred 10037 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  /  m )  /  n
)  e.  RR )
130129recnd 9103 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  /  m )  /  n
)  e.  CC )
131103adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  =/=  0 )
132131adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  =/=  0 )
133130, 118, 132divcan3d 9784 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  x.  ( ( (Λ `  m )  /  m )  /  n
) )  /  x
)  =  ( ( (Λ `  m )  /  m )  /  n
) )
134127, 133eqtrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
)  =  ( ( (Λ `  m )  /  m )  /  n
) )
135134sumeq2dv 12485 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( (Λ `  m
)  /  m )  /  n ) )
13696recnd 9103 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  CC )
13750, 117, 136, 131fsumdivc 12557 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  /  x )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x ) )
13850, 119, 122, 123fsumdivc 12557 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  /  n )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  /  m )  /  n ) )
139135, 137, 1383eqtr4d 2477 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  /  x )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) )
140139oveq2d 6088 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) ) )
14197recnd 9103 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  CC )
14259, 141, 117, 131divassd 9814 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  /  x )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x ) ) )
14350, 121fsumrecl 12516 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  RR )
144143recnd 9103 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  CC )
14559, 119, 144, 123div32d 9802 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) ) )
146140, 142, 1453eqtr4d 2477 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  /  x )  =  ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
147146sumeq2dv 12485 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
148112, 147eqtrd 2467 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
149148oveq2d 6088 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
150110, 149eqtrd 2467 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )  /  x )  =  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
151109, 150oveq12d 6090 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  /  x
)  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  /  x
) )  =  ( ( log `  x
)  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) ) )
152108, 151eqtrd 2467 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  /  x )  =  ( ( log `  x
)  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) ) )
153152oveq2d 6088 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( log `  x )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) ) ) ) )
15494, 18, 103divcld 9779 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  e.  CC )
15558, 25nndivred 10037 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
156155, 143remulcld 9105 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  e.  RR )
15766, 156fsumrecl 12516 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  RR )
15876, 157remulcld 9105 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  e.  RR )
159158recnd 9103 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  e.  CC )
160154, 20, 159subsub2d 9429 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( log `  x )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) ) ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
161153, 160eqtrd 2467 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
162104, 161eqtrd 2467 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
16392, 162eqtrd 2467 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
164163mpteq2dva 4287 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) ) )
16593, 10rerpdivcld 10664 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  e.  RR )
166158, 19resubcld 9454 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) )  e.  RR )
167 selberg4 21243 . . . . 5  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
) )  e.  O
( 1 )
168167a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
) )  e.  O
( 1 ) )
169 2cn 10059 . . . . . . . . 9  |-  2  e.  CC
170169a1i 11 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  CC )
171157, 75rerpdivcld 10664 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  RR )
172171recnd 9103 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  CC )
17319rehalfcld 10203 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
174173recnd 9103 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
175170, 172, 174subdid 9478 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  =  ( ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x
)  /  2 ) ) ) )
176157recnd 9103 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  CC )
17775rpne0d 10642 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  =/=  0 )
178170, 20, 176, 177div32d 9802 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) ) ) )
179178eqcomd 2440 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
180 2ne0 10072 . . . . . . . . . 10  |-  2  =/=  0
181180a1i 11 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  =/=  0 )
18220, 170, 181divcan2d 9781 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( ( log `  x )  /  2 ) )  =  ( log `  x
) )
183179, 182oveq12d 6090 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x
)  /  2 ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )
184175, 183eqtrd 2467 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )
185184mpteq2dva 4287 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) ) )
186171, 173resubcld 9454 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  e.  RR )
187 ioossre 10961 . . . . . . 7  |-  ( 1 (,)  +oo )  C_  RR
188169a1i 11 . . . . . . 7  |-  (  T. 
->  2  e.  CC )
189 o1const 12401 . . . . . . 7  |-  ( ( ( 1 (,)  +oo )  C_  RR  /\  2  e.  CC )  ->  (
x  e.  ( 1 (,)  +oo )  |->  2 )  e.  O ( 1 ) )
190187, 188, 189sylancr 645 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  2 )  e.  O
( 1 ) )
191 2vmadivsum 21223 . . . . . . 7  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O
( 1 )
192191a1i 11 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O
( 1 ) )
19374, 186, 190, 192o1mul2 12406 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) ) )  e.  O ( 1 ) )
194185, 193eqeltrrd 2510 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )  e.  O
( 1 ) )
195165, 166, 168, 194o1add2 12405 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )  e.  O
( 1 ) )
196164, 195eqeltrd 2509 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 ) )
197196trud 1332 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2598    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   ` cfv 5445  (class class class)co 6072   CCcc 8977   RRcr 8978   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984    +oocpnf 9106    < clt 9109    - cmin 9280    / cdiv 9666   NNcn 9989   2c2 10038   RR+crp 10601   (,)cioo 10905   ...cfz 11032   |_cfl 11189   O ( 1 )co1 12268   sum_csu 12467   logclog 20440  Λcvma 20862  ψcchp 20863
This theorem is referenced by:  selberg34r  21253
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ioc 10910  df-ico 10911  df-icc 10912  df-fz