MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem1 Unicode version

Theorem selberglem1 20806
Description: Lemma for selberg 20809. Estimation of the asymptotic part of selberglem3 20808. (Contributed by Mario Carneiro, 20-May-2016.)
Hypothesis
Ref Expression
selberglem1.t  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
Assertion
Ref Expression
selberglem1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Distinct variable group:    x, n
Allowed substitution hints:    T( x, n)

Proof of Theorem selberglem1
StepHypRef Expression
1 fzfid 11127 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 10911 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
32adantl 452 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
4 mucl 20491 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
53, 4syl 15 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
65zred 10209 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
76, 3nndivred 9884 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
87recnd 8951 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
92nnrpd 10481 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
10 rpdivcl 10468 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
119, 10sylan2 460 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
12 relogcl 20040 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( log `  ( x  /  n
) )  e.  RR )
1311, 12syl 15 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
1413recnd 8951 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
1514sqcld 11336 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  CC )
168, 15mulcld 8945 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  e.  CC )
171, 16fsumcl 12303 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  e.  CC )
18 2cn 9906 . . . . . . . . 9  |-  2  e.  CC
1918a1i 10 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
2019, 14mulcld 8945 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  (
x  /  n ) ) )  e.  CC )
2119, 20subcld 9247 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) )  e.  CC )
228, 21mulcld 8945 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
231, 22fsumcl 12303 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC )
24 relogcl 20040 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
2524recnd 8951 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
26 mulcl 8911 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( log `  x )  e.  CC )  -> 
( 2  x.  ( log `  x ) )  e.  CC )
2718, 25, 26sylancr 644 . . . . 5  |-  ( x  e.  RR+  ->  ( 2  x.  ( log `  x
) )  e.  CC )
2817, 23, 27addsubd 9268 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
29 selberglem1.t . . . . . . . . 9  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
3029oveq2i 5956 . . . . . . . 8  |-  ( ( mmu `  n )  x.  T )  =  ( ( mmu `  n )  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )
315zcnd 10210 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
3215, 21addcld 8944 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
333nnrpd 10481 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3433rpcnne0d 10491 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
35 divass 9532 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( mmu `  n )  x.  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
) ) )
36 div23 9533 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( ( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
3735, 36eqtr3d 2392 . . . . . . . . . 10  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( mmu `  n )  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )  =  ( ( ( mmu `  n )  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
3831, 32, 34, 37syl3anc 1182 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n ) )  =  ( ( ( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
398, 15, 21adddid 8949 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4038, 39eqtrd 2390 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4130, 40syl5eq 2402 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  T )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4241sumeq2dv 12273 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( ( log `  (
x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
431, 16, 22fsumadd 12308 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( ( log `  (
x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
4442, 43eqtrd 2390 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
4544oveq1d 5960 . . . 4  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )  -  ( 2  x.  ( log `  x
) ) ) )
4618a1i 10 . . . . . . . 8  |-  ( x  e.  RR+  ->  2  e.  CC )
478, 14mulcld 8945 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
488, 47subcld 9247 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  -  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) ) )  e.  CC )
491, 46, 48fsummulc2 12343 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 2  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) ) )
501, 8, 47fsumsub 12347 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
5150oveq2d 5961 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 2  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
5249, 51eqtr3d 2392 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
5319, 8mulcomd 8946 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( mmu `  n )  /  n
) )  =  ( ( ( mmu `  n )  /  n
)  x.  2 ) )
5419, 8, 14mul12d 9111 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )
5553, 54oveq12d 5963 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  ( ( mmu `  n )  /  n ) )  -  ( 2  x.  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  2 )  -  ( ( ( mmu `  n )  /  n )  x.  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5619, 8, 47subdid 9325 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  -  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( 2  x.  ( ( mmu `  n )  /  n ) )  -  ( 2  x.  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
578, 19, 20subdid 9325 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  2 )  -  ( ( ( mmu `  n )  /  n )  x.  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5855, 56, 573eqtr4d 2400 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  -  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5958sumeq2dv 12273 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )
6052, 59eqtr3d 2392 . . . . 5  |-  ( x  e.  RR+  ->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )
6160oveq2d 5961 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
6228, 45, 613eqtr4d 2400 . . 3  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
6362mpteq2ia 4183 . 2  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
64 ovex 5970 . . . . 5  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) )  e.  _V
6564a1i 10 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) )  e.  _V )
66 ovex 5970 . . . . 5  |-  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  _V
6766a1i 10 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  _V )
68 mulog2sum 20798 . . . . 5  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) ) )  e.  O ( 1 )
6968a1i 10 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) ) )  e.  O ( 1 ) )
7018elexi 2873 . . . . . 6  |-  2  e.  _V
7170a1i 10 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  2  e. 
_V )
72 ovex 5970 . . . . . 6  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  _V
7372a1i 10 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  _V )
74 rpssre 10456 . . . . . . 7  |-  RR+  C_  RR
75 o1const 12189 . . . . . . 7  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O ( 1 ) )
7674, 18, 75mp2an 653 . . . . . 6  |-  ( x  e.  RR+  |->  2 )  e.  O ( 1 )
7776a1i 10 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  2 )  e.  O
( 1 ) )
78 reex 8918 . . . . . . . . 9  |-  RR  e.  _V
7978, 74ssexi 4240 . . . . . . . 8  |-  RR+  e.  _V
8079a1i 10 . . . . . . 7  |-  (  T. 
->  RR+  e.  _V )
81 sumex 12257 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  _V
8281a1i 10 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  _V )
83 sumex 12257 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e. 
_V
8483a1i 10 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e. 
_V )
85 eqidd 2359 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) ) )
86 eqidd 2359 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
8780, 82, 84, 85, 86offval2 6182 . . . . . 6  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  o F  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
88 mudivsum 20791 . . . . . . 7  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O
( 1 )
89 mulogsum 20793 . . . . . . 7  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 )
90 o1sub 12185 . . . . . . 7  |-  ( ( ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O ( 1 )  /\  (
x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 ) )  ->  (
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  o F  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O ( 1 ) )
9188, 89, 90mp2an 653 . . . . . 6  |-  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  o F  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O ( 1 )
9287, 91syl6eqelr 2447 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O ( 1 ) )
9371, 73, 77, 92o1mul2 12194 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )  e.  O
( 1 ) )
9465, 67, 69, 93o1add2 12193 . . 3  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )  e.  O ( 1 ) )
9594trud 1323 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )  e.  O ( 1 )
9663, 95eqeltri 2428 1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    T. wtru 1316    = wceq 1642    e. wcel 1710    =/= wne 2521   _Vcvv 2864    C_ wss 3228    e. cmpt 4158   ` cfv 5337  (class class class)co 5945    o Fcof 6163   CCcc 8825   RRcr 8826   0cc0 8827   1c1 8828    + caddc 8830    x. cmul 8832    - cmin 9127    / cdiv 9513   NNcn 9836   2c2 9885   ZZcz 10116   RR+crp 10446   ...cfz 10874   |_cfl 11016   ^cexp 11197   O ( 1 )co1 12056   sum_csu 12255   logclog 20019   mmucmu 20444
This theorem is referenced by:  selberglem2  20807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906  ax-mulf 8907
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-disj 4075  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ioo 10752  df-ioc 10753  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-fac 11382  df-bc 11409  df-hash 11431  df-shft 11658  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-limsup 12041  df-clim 12058  df-rlim 12059  df-o1 12060  df-lo1 12061  df-sum 12256  df-ef 12446  df-e 12447  df-sin 12448  df-cos 12449  df-pi 12451  df-dvds 12629  df-gcd 12783  df-prm 12856  df-pc 12987  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-unif 13328  df-hom 13329  df-cco 13330  df-rest 13426  df-topn 13427  df-topgen 13443  df-pt 13444  df-prds 13447  df-xrs 13502  df-0g 13503  df-gsum 13504  df-qtop 13509  df-imas 13510  df-xps 13512  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-submnd 14515  df-mulg 14591  df-cntz 14892  df-cmn 15190  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-fbas 16479  df-fg 16480  df-cnfld 16483  df-top 16742  df-bases 16744  df-topon 16745  df-topsp 16746  df-cld 16862  df-ntr 16863  df-cls 16864  df-nei 16941  df-lp 16974  df-perf 16975  df-cn 17063  df-cnp 17064  df-haus 17149  df-cmp 17220  df-tx 17363  df-hmeo 17552  df-fil 17643  df-fm 17735  df-flim 17736  df-flf 17737  df-xms 17987  df-ms 17988  df-tms 17989  df-cncf 18485  df-limc 19320  df-dv 19321  df-log 20021  df-cxp 20022  df-em 20398  df-mu 20450
  Copyright terms: Public domain W3C validator