MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcinv Structured version   Unicode version

Theorem setcinv 14276
Description: An inverse in the category of sets is the converse operation. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c  |-  C  =  ( SetCat `  U )
setcmon.u  |-  ( ph  ->  U  e.  V )
setcmon.x  |-  ( ph  ->  X  e.  U )
setcmon.y  |-  ( ph  ->  Y  e.  U )
setcinv.n  |-  N  =  (Inv `  C )
Assertion
Ref Expression
setcinv  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F : X -1-1-onto-> Y  /\  G  =  `' F ) ) )

Proof of Theorem setcinv
StepHypRef Expression
1 eqid 2442 . . 3  |-  ( Base `  C )  =  (
Base `  C )
2 setcinv.n . . 3  |-  N  =  (Inv `  C )
3 setcmon.u . . . 4  |-  ( ph  ->  U  e.  V )
4 setcmon.c . . . . 5  |-  C  =  ( SetCat `  U )
54setccat 14271 . . . 4  |-  ( U  e.  V  ->  C  e.  Cat )
63, 5syl 16 . . 3  |-  ( ph  ->  C  e.  Cat )
7 setcmon.x . . . 4  |-  ( ph  ->  X  e.  U )
84, 3setcbas 14264 . . . 4  |-  ( ph  ->  U  =  ( Base `  C ) )
97, 8eleqtrd 2518 . . 3  |-  ( ph  ->  X  e.  ( Base `  C ) )
10 setcmon.y . . . 4  |-  ( ph  ->  Y  e.  U )
1110, 8eleqtrd 2518 . . 3  |-  ( ph  ->  Y  e.  ( Base `  C ) )
12 eqid 2442 . . 3  |-  (Sect `  C )  =  (Sect `  C )
131, 2, 6, 9, 11, 12isinv 14016 . 2  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F ( X (Sect `  C ) Y ) G  /\  G ( Y (Sect `  C ) X ) F ) ) )
144, 3, 7, 10, 12setcsect 14275 . . . . 5  |-  ( ph  ->  ( F ( X (Sect `  C ) Y ) G  <->  ( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F )  =  (  _I  |`  X ) ) ) )
15 df-3an 939 . . . . 5  |-  ( ( F : X --> Y  /\  G : Y --> X  /\  ( G  o.  F
)  =  (  _I  |`  X ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
) )
1614, 15syl6bb 254 . . . 4  |-  ( ph  ->  ( F ( X (Sect `  C ) Y ) G  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
) ) )
174, 3, 10, 7, 12setcsect 14275 . . . . 5  |-  ( ph  ->  ( G ( Y (Sect `  C ) X ) F  <->  ( G : Y --> X  /\  F : X --> Y  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) ) )
18 3ancoma 944 . . . . . 6  |-  ( ( G : Y --> X  /\  F : X --> Y  /\  ( F  o.  G
)  =  (  _I  |`  Y ) )  <->  ( F : X --> Y  /\  G : Y --> X  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) )
19 df-3an 939 . . . . . 6  |-  ( ( F : X --> Y  /\  G : Y --> X  /\  ( F  o.  G
)  =  (  _I  |`  Y ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) )
2018, 19bitri 242 . . . . 5  |-  ( ( G : Y --> X  /\  F : X --> Y  /\  ( F  o.  G
)  =  (  _I  |`  Y ) )  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) )
2117, 20syl6bb 254 . . . 4  |-  ( ph  ->  ( G ( Y (Sect `  C ) X ) F  <->  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) )
2216, 21anbi12d 693 . . 3  |-  ( ph  ->  ( ( F ( X (Sect `  C
) Y ) G  /\  G ( Y (Sect `  C ) X ) F )  <-> 
( ( ( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X )
)  /\  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) ) )
23 anandi 803 . . 3  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) )  <->  ( (
( F : X --> Y  /\  G : Y --> X )  /\  ( G  o.  F )  =  (  _I  |`  X ) )  /\  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) )
2422, 23syl6bbr 256 . 2  |-  ( ph  ->  ( ( F ( X (Sect `  C
) Y ) G  /\  G ( Y (Sect `  C ) X ) F )  <-> 
( ( F : X
--> Y  /\  G : Y
--> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) ) ) )
25 fcof1o 6055 . . . . . 6  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( F  o.  G
)  =  (  _I  |`  Y )  /\  ( G  o.  F )  =  (  _I  |`  X ) ) )  ->  ( F : X -1-1-onto-> Y  /\  `' F  =  G ) )
26 eqcom 2444 . . . . . . 7  |-  ( `' F  =  G  <->  G  =  `' F )
2726anbi2i 677 . . . . . 6  |-  ( ( F : X -1-1-onto-> Y  /\  `' F  =  G
)  <->  ( F : X
-1-1-onto-> Y  /\  G  =  `' F ) )
2825, 27sylib 190 . . . . 5  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( F  o.  G
)  =  (  _I  |`  Y )  /\  ( G  o.  F )  =  (  _I  |`  X ) ) )  ->  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )
2928ancom2s 779 . . . 4  |-  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) )  ->  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )
3029adantl 454 . . 3  |-  ( (
ph  /\  ( ( F : X --> Y  /\  G : Y --> X )  /\  ( ( G  o.  F )  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) ) )  -> 
( F : X -1-1-onto-> Y  /\  G  =  `' F ) )
31 f1of 5703 . . . . 5  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
3231ad2antrl 710 . . . 4  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  F : X --> Y )
33 f1ocnv 5716 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
3433ad2antrl 710 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  `' F : Y -1-1-onto-> X )
35 f1oeq1 5694 . . . . . . 7  |-  ( G  =  `' F  -> 
( G : Y -1-1-onto-> X  <->  `' F : Y -1-1-onto-> X ) )
3635ad2antll 711 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( G : Y -1-1-onto-> X  <->  `' F : Y -1-1-onto-> X ) )
3734, 36mpbird 225 . . . . 5  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  G : Y -1-1-onto-> X )
38 f1of 5703 . . . . 5  |-  ( G : Y -1-1-onto-> X  ->  G : Y
--> X )
3937, 38syl 16 . . . 4  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  G : Y --> X )
40 simprr 735 . . . . . . 7  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  ->  G  =  `' F
)
4140coeq1d 5063 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( G  o.  F
)  =  ( `' F  o.  F ) )
42 f1ococnv1 5733 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  ( `' F  o.  F )  =  (  _I  |`  X ) )
4342ad2antrl 710 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( `' F  o.  F )  =  (  _I  |`  X )
)
4441, 43eqtrd 2474 . . . . 5  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( G  o.  F
)  =  (  _I  |`  X ) )
4540coeq2d 5064 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( F  o.  G
)  =  ( F  o.  `' F ) )
46 f1ococnv2 5731 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  ( F  o.  `' F )  =  (  _I  |`  Y )
)
4746ad2antrl 710 . . . . . 6  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( F  o.  `' F )  =  (  _I  |`  Y )
)
4845, 47eqtrd 2474 . . . . 5  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( F  o.  G
)  =  (  _I  |`  Y ) )
4944, 48jca 520 . . . 4  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( ( G  o.  F )  =  (  _I  |`  X )  /\  ( F  o.  G
)  =  (  _I  |`  Y ) ) )
5032, 39, 49jca31 522 . . 3  |-  ( (
ph  /\  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) )  -> 
( ( F : X
--> Y  /\  G : Y
--> X )  /\  (
( G  o.  F
)  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y ) ) ) )
5130, 50impbida 807 . 2  |-  ( ph  ->  ( ( ( F : X --> Y  /\  G : Y --> X )  /\  ( ( G  o.  F )  =  (  _I  |`  X )  /\  ( F  o.  G )  =  (  _I  |`  Y )
) )  <->  ( F : X -1-1-onto-> Y  /\  G  =  `' F ) ) )
5213, 24, 513bitrd 272 1  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F : X -1-1-onto-> Y  /\  G  =  `' F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   class class class wbr 4237    _I cid 4522   `'ccnv 4906    |` cres 4909    o. ccom 4911   -->wf 5479   -1-1-onto->wf1o 5482   ` cfv 5483  (class class class)co 6110   Basecbs 13500   Catccat 13920  Sectcsect 14001  Invcinv 14002   SetCatcsetc 14261
This theorem is referenced by:  setciso  14277  yonedainv  14409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-fz 11075  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-hom 13584  df-cco 13585  df-cat 13924  df-cid 13925  df-sect 14004  df-inv 14005  df-setc 14262
  Copyright terms: Public domain W3C validator