MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setind Unicode version

Theorem setind 7662
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Distinct variable group:    x, A

Proof of Theorem setind
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssindif0 3673 . . . . . . 7  |-  ( y 
C_  A  <->  ( y  i^i  ( _V  \  A
) )  =  (/) )
2 sseq1 3361 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
3 eleq1 2495 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
42, 3imbi12d 312 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  C_  A  ->  x  e.  A )  <-> 
( y  C_  A  ->  y  e.  A ) ) )
54spv 1965 . . . . . . 7  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( y  C_  A  ->  y  e.  A ) )
61, 5syl5bir 210 . . . . . 6  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( (
y  i^i  ( _V  \  A ) )  =  (/)  ->  y  e.  A
) )
7 eldifn 3462 . . . . . 6  |-  ( y  e.  ( _V  \  A )  ->  -.  y  e.  A )
86, 7nsyli 135 . . . . 5  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( y  e.  ( _V  \  A
)  ->  -.  (
y  i^i  ( _V  \  A ) )  =  (/) ) )
98imp 419 . . . 4  |-  ( ( A. x ( x 
C_  A  ->  x  e.  A )  /\  y  e.  ( _V  \  A
) )  ->  -.  ( y  i^i  ( _V  \  A ) )  =  (/) )
109nrexdv 2801 . . 3  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  -.  E. y  e.  ( _V  \  A
) ( y  i^i  ( _V  \  A
) )  =  (/) )
11 zfregs 7657 . . . 4  |-  ( ( _V  \  A )  =/=  (/)  ->  E. y  e.  ( _V  \  A
) ( y  i^i  ( _V  \  A
) )  =  (/) )
1211necon1bi 2641 . . 3  |-  ( -. 
E. y  e.  ( _V  \  A ) ( y  i^i  ( _V  \  A ) )  =  (/)  ->  ( _V 
\  A )  =  (/) )
1310, 12syl 16 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( _V  \  A )  =  (/) )
14 vdif0 3679 . 2  |-  ( A  =  _V  <->  ( _V  \  A )  =  (/) )
1513, 14sylibr 204 1  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1549    = wceq 1652    e. wcel 1725   E.wrex 2698   _Vcvv 2948    \ cdif 3309    i^i cin 3311    C_ wss 3312   (/)c0 3620
This theorem is referenced by:  setind2  7663  tz9.13  7706  unir1  7728  setinds  25389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-reg 7549  ax-inf2 7585
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-recs 6624  df-rdg 6659
  Copyright terms: Public domain W3C validator