MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setind Unicode version

Theorem setind 7415
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Distinct variable group:    x, A
Dummy variable  y is distinct from all other variables.

Proof of Theorem setind
StepHypRef Expression
1 ssindif0 3510 . . . . . . 7  |-  ( y 
C_  A  <->  ( y  i^i  ( _V  \  A
) )  =  (/) )
2 sseq1 3201 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
3 eleq1 2345 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
42, 3imbi12d 313 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  C_  A  ->  x  e.  A )  <-> 
( y  C_  A  ->  y  e.  A ) ) )
54spv 1944 . . . . . . 7  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( y  C_  A  ->  y  e.  A ) )
61, 5syl5bir 211 . . . . . 6  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( (
y  i^i  ( _V  \  A ) )  =  (/)  ->  y  e.  A
) )
7 eldifn 3301 . . . . . 6  |-  ( y  e.  ( _V  \  A )  ->  -.  y  e.  A )
86, 7nsyli 135 . . . . 5  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( y  e.  ( _V  \  A
)  ->  -.  (
y  i^i  ( _V  \  A ) )  =  (/) ) )
98imp 420 . . . 4  |-  ( ( A. x ( x 
C_  A  ->  x  e.  A )  /\  y  e.  ( _V  \  A
) )  ->  -.  ( y  i^i  ( _V  \  A ) )  =  (/) )
109nrexdv 2648 . . 3  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  -.  E. y  e.  ( _V  \  A
) ( y  i^i  ( _V  \  A
) )  =  (/) )
11 zfregs 7410 . . . 4  |-  ( ( _V  \  A )  =/=  (/)  ->  E. y  e.  ( _V  \  A
) ( y  i^i  ( _V  \  A
) )  =  (/) )
1211necon1bi 2491 . . 3  |-  ( -. 
E. y  e.  ( _V  \  A ) ( y  i^i  ( _V  \  A ) )  =  (/)  ->  ( _V 
\  A )  =  (/) )
1310, 12syl 17 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( _V  \  A )  =  (/) )
14 vdif0 3516 . 2  |-  ( A  =  _V  <->  ( _V  \  A )  =  (/) )
1513, 14sylibr 205 1  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6   A.wal 1528    = wceq 1624    e. wcel 1685   E.wrex 2546   _Vcvv 2790    \ cdif 3151    i^i cin 3153    C_ wss 3154   (/)c0 3457
This theorem is referenced by:  setind2  7416  tz9.13  7459  unir1  7481  setinds  23536
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512  ax-reg 7302  ax-inf2 7338
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-recs 6384  df-rdg 6419
  Copyright terms: Public domain W3C validator