Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Structured version   Unicode version

Theorem setinds 25436
Description: Principle of  _E induction (set induction). If a property passes from all elements of  x to  x itself, then it holds for all  x. (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1  |-  ( A. y  e.  x  [. y  /  x ]. ph  ->  ph )
Assertion
Ref Expression
setinds  |-  ph
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem setinds
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2965 . 2  |-  x  e. 
_V
2 setind 7702 . . . . 5  |-  ( A. z ( z  C_  { x  |  ph }  ->  z  e.  { x  |  ph } )  ->  { x  |  ph }  =  _V )
3 dfss3 3324 . . . . . . 7  |-  ( z 
C_  { x  | 
ph }  <->  A. y  e.  z  y  e.  { x  |  ph }
)
4 df-sbc 3168 . . . . . . . . 9  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
54ralbii 2735 . . . . . . . 8  |-  ( A. y  e.  z  [. y  /  x ]. ph  <->  A. y  e.  z  y  e.  { x  |  ph }
)
6 nfcv 2578 . . . . . . . . . . 11  |-  F/_ x
z
7 nfsbc1v 3186 . . . . . . . . . . 11  |-  F/ x [. y  /  x ]. ph
86, 7nfral 2765 . . . . . . . . . 10  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
9 nfsbc1v 3186 . . . . . . . . . 10  |-  F/ x [. z  /  x ]. ph
108, 9nfim 1834 . . . . . . . . 9  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
11 raleq 2910 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
12 sbceq1a 3177 . . . . . . . . . 10  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1311, 12imbi12d 313 . . . . . . . . 9  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
14 setinds.1 . . . . . . . . 9  |-  ( A. y  e.  x  [. y  /  x ]. ph  ->  ph )
1510, 13, 14chvar 1971 . . . . . . . 8  |-  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
165, 15sylbir 206 . . . . . . 7  |-  ( A. y  e.  z  y  e.  { x  |  ph }  ->  [. z  /  x ]. ph )
173, 16sylbi 189 . . . . . 6  |-  ( z 
C_  { x  | 
ph }  ->  [. z  /  x ]. ph )
18 df-sbc 3168 . . . . . 6  |-  ( [. z  /  x ]. ph  <->  z  e.  { x  |  ph }
)
1917, 18sylib 190 . . . . 5  |-  ( z 
C_  { x  | 
ph }  ->  z  e.  { x  |  ph } )
202, 19mpg 1558 . . . 4  |-  { x  |  ph }  =  _V
2120eqcomi 2446 . . 3  |-  _V  =  { x  |  ph }
2221abeq2i 2549 . 2  |-  ( x  e.  _V  <->  ph )
231, 22mpbi 201 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727   {cab 2428   A.wral 2711   _Vcvv 2962   [.wsbc 3167    C_ wss 3306
This theorem is referenced by:  setinds2f  25437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-reg 7589  ax-inf2 7625
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-recs 6662  df-rdg 6697
  Copyright terms: Public domain W3C validator