Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Structured version   Unicode version

Theorem setinds 25436
 Description: Principle of induction (set induction). If a property passes from all elements of to itself, then it holds for all . (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1
Assertion
Ref Expression
setinds
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem setinds
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2965 . 2
2 setind 7702 . . . . 5
3 dfss3 3324 . . . . . . 7
4 df-sbc 3168 . . . . . . . . 9
54ralbii 2735 . . . . . . . 8
6 nfcv 2578 . . . . . . . . . . 11
7 nfsbc1v 3186 . . . . . . . . . . 11
86, 7nfral 2765 . . . . . . . . . 10
9 nfsbc1v 3186 . . . . . . . . . 10
108, 9nfim 1834 . . . . . . . . 9
11 raleq 2910 . . . . . . . . . 10
12 sbceq1a 3177 . . . . . . . . . 10
1311, 12imbi12d 313 . . . . . . . . 9
14 setinds.1 . . . . . . . . 9
1510, 13, 14chvar 1971 . . . . . . . 8
165, 15sylbir 206 . . . . . . 7
173, 16sylbi 189 . . . . . 6
18 df-sbc 3168 . . . . . 6
1917, 18sylib 190 . . . . 5
202, 19mpg 1558 . . . 4
2120eqcomi 2446 . . 3
2221abeq2i 2549 . 2
231, 22mpbi 201 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653   wcel 1727  cab 2428  wral 2711  cvv 2962  wsbc 3167   wss 3306 This theorem is referenced by:  setinds2f  25437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-reg 7589  ax-inf2 7625 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-recs 6662  df-rdg 6697
 Copyright terms: Public domain W3C validator