Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setindtr Unicode version

Theorem setindtr 26470
Description: Epsilon induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind 7373; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
setindtr  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( E. y ( Tr  y  /\  B  e.  y
)  ->  B  e.  A ) )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem setindtr
StepHypRef Expression
1 nfv 1629 . . . . . . . . . . 11  |-  F/ x Tr  y
2 nfa1 1719 . . . . . . . . . . 11  |-  F/ x A. x ( x  C_  A  ->  x  e.  A
)
31, 2nfan 1737 . . . . . . . . . 10  |-  F/ x
( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )
4 eldifn 3260 . . . . . . . . . . . . . 14  |-  ( x  e.  ( y  \  A )  ->  -.  x  e.  A )
54adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  /\  x  e.  ( y  \  A
) )  ->  -.  x  e.  A )
6 eldifi 3259 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( y  \  A )  ->  x  e.  y )
7 trss 4082 . . . . . . . . . . . . . . . . . . 19  |-  ( Tr  y  ->  ( x  e.  y  ->  x  C_  y ) )
86, 7syl5 30 . . . . . . . . . . . . . . . . . 18  |-  ( Tr  y  ->  ( x  e.  ( y  \  A
)  ->  x  C_  y
) )
98imp 420 . . . . . . . . . . . . . . . . 17  |-  ( ( Tr  y  /\  x  e.  ( y  \  A
) )  ->  x  C_  y )
10 df-ss 3127 . . . . . . . . . . . . . . . . 17  |-  ( x 
C_  y  <->  ( x  i^i  y )  =  x )
119, 10sylib 190 . . . . . . . . . . . . . . . 16  |-  ( ( Tr  y  /\  x  e.  ( y  \  A
) )  ->  (
x  i^i  y )  =  x )
1211adantlr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  /\  x  e.  ( y  \  A
) )  ->  (
x  i^i  y )  =  x )
1312sseq1d 3166 . . . . . . . . . . . . . 14  |-  ( ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  /\  x  e.  ( y  \  A
) )  ->  (
( x  i^i  y
)  C_  A  <->  x  C_  A
) )
14 ax-4 1692 . . . . . . . . . . . . . . 15  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( x  C_  A  ->  x  e.  A ) )
1514ad2antlr 710 . . . . . . . . . . . . . 14  |-  ( ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  /\  x  e.  ( y  \  A
) )  ->  (
x  C_  A  ->  x  e.  A ) )
1613, 15sylbid 208 . . . . . . . . . . . . 13  |-  ( ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  /\  x  e.  ( y  \  A
) )  ->  (
( x  i^i  y
)  C_  A  ->  x  e.  A ) )
175, 16mtod 170 . . . . . . . . . . . 12  |-  ( ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  /\  x  e.  ( y  \  A
) )  ->  -.  ( x  i^i  y
)  C_  A )
18 inssdif0 3482 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  A  <->  ( x  i^i  ( y  \  A
) )  =  (/) )
1917, 18sylnib 297 . . . . . . . . . . 11  |-  ( ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  /\  x  e.  ( y  \  A
) )  ->  -.  ( x  i^i  (
y  \  A )
)  =  (/) )
2019ex 425 . . . . . . . . . 10  |-  ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  ->  (
x  e.  ( y 
\  A )  ->  -.  ( x  i^i  (
y  \  A )
)  =  (/) ) )
213, 20ralrimi 2597 . . . . . . . . 9  |-  ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  ->  A. x  e.  ( y  \  A
)  -.  ( x  i^i  ( y  \  A ) )  =  (/) )
22 ralnex 2526 . . . . . . . . 9  |-  ( A. x  e.  ( y  \  A )  -.  (
x  i^i  ( y  \  A ) )  =  (/) 
<->  -.  E. x  e.  ( y  \  A
) ( x  i^i  ( y  \  A
) )  =  (/) )
2321, 22sylib 190 . . . . . . . 8  |-  ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  ->  -.  E. x  e.  ( y 
\  A ) ( x  i^i  ( y 
\  A ) )  =  (/) )
24 vex 2760 . . . . . . . . . . 11  |-  y  e. 
_V
25 difss 3264 . . . . . . . . . . 11  |-  ( y 
\  A )  C_  y
2624, 25ssexi 4119 . . . . . . . . . 10  |-  ( y 
\  A )  e. 
_V
2726zfreg 7263 . . . . . . . . 9  |-  ( ( y  \  A )  =/=  (/)  ->  E. x  e.  ( y  \  A
) ( x  i^i  ( y  \  A
) )  =  (/) )
2827necon1bi 2462 . . . . . . . 8  |-  ( -. 
E. x  e.  ( y  \  A ) ( x  i^i  (
y  \  A )
)  =  (/)  ->  (
y  \  A )  =  (/) )
2923, 28syl 17 . . . . . . 7  |-  ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  ->  (
y  \  A )  =  (/) )
30 ssdif0 3474 . . . . . . 7  |-  ( y 
C_  A  <->  ( y  \  A )  =  (/) )
3129, 30sylibr 205 . . . . . 6  |-  ( ( Tr  y  /\  A. x ( x  C_  A  ->  x  e.  A
) )  ->  y  C_  A )
3231adantlr 698 . . . . 5  |-  ( ( ( Tr  y  /\  B  e.  y )  /\  A. x ( x 
C_  A  ->  x  e.  A ) )  -> 
y  C_  A )
33 simplr 734 . . . . 5  |-  ( ( ( Tr  y  /\  B  e.  y )  /\  A. x ( x 
C_  A  ->  x  e.  A ) )  ->  B  e.  y )
3432, 33sseldd 3142 . . . 4  |-  ( ( ( Tr  y  /\  B  e.  y )  /\  A. x ( x 
C_  A  ->  x  e.  A ) )  ->  B  e.  A )
3534ex 425 . . 3  |-  ( ( Tr  y  /\  B  e.  y )  ->  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  B  e.  A ) )
3635exlimiv 2024 . 2  |-  ( E. y ( Tr  y  /\  B  e.  y
)  ->  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  B  e.  A ) )
3736com12 29 1  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  ( E. y ( Tr  y  /\  B  e.  y
)  ->  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   A.wral 2516   E.wrex 2517    \ cdif 3110    i^i cin 3112    C_ wss 3113   (/)c0 3416   Tr wtr 4073
This theorem is referenced by:  setindtrs  26471
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-reg 7260
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-v 2759  df-dif 3116  df-in 3120  df-ss 3127  df-nul 3417  df-uni 3788  df-tr 4074
  Copyright terms: Public domain W3C validator