MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgmppw Unicode version

Theorem sgmppw 20659
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
sgmppw  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^ c  A ) ^ k
) )
Distinct variable groups:    A, k    k, N    P, k

Proof of Theorem sgmppw
Dummy variables  i  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 956 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  A  e.  CC )
2 simp2 957 . . . . 5  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  Prime )
3 prmnn 12969 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3syl 15 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  NN )
5 simp3 958 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  N  e.  NN0 )
64, 5nnexpcld 11431 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  NN )
7 sgmval 20603 . . 3  |-  ( ( A  e.  CC  /\  ( P ^ N )  e.  NN )  -> 
( A  sigma  ( P ^ N ) )  =  sum_ n  e.  {
x  e.  NN  |  x  ||  ( P ^ N ) }  (
n  ^ c  A
) )
81, 6, 7syl2anc 642 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^ c  A ) )
9 oveq1 5988 . . 3  |-  ( n  =  ( P ^
k )  ->  (
n  ^ c  A
)  =  ( ( P ^ k )  ^ c  A ) )
10 fzfid 11199 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
0 ... N )  e. 
Fin )
11 eqid 2366 . . . . 5  |-  ( i  e.  ( 0 ... N )  |->  ( P ^ i ) )  =  ( i  e.  ( 0 ... N
)  |->  ( P ^
i ) )
1211dvdsppwf1o 20649 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
132, 5, 12syl2anc 642 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
14 oveq2 5989 . . . . 5  |-  ( i  =  k  ->  ( P ^ i )  =  ( P ^ k
) )
15 ovex 6006 . . . . 5  |-  ( P ^ k )  e. 
_V
1614, 11, 15fvmpt 5709 . . . 4  |-  ( k  e.  ( 0 ... N )  ->  (
( i  e.  ( 0 ... N ) 
|->  ( P ^ i
) ) `  k
)  =  ( P ^ k ) )
1716adantl 452 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( i  e.  ( 0 ... N ) 
|->  ( P ^ i
) ) `  k
)  =  ( P ^ k ) )
18 ssrab2 3344 . . . . . 6  |-  { x  e.  NN  |  x  ||  ( P ^ N ) }  C_  NN
1918sseli 3262 . . . . 5  |-  ( n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ->  n  e.  NN )
2019nncnd 9909 . . . 4  |-  ( n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ->  n  e.  CC )
21 cxpcl 20243 . . . 4  |-  ( ( n  e.  CC  /\  A  e.  CC )  ->  ( n  ^ c  A )  e.  CC )
2220, 1, 21syl2anr 464 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  ( n  ^ c  A )  e.  CC )
239, 10, 13, 17, 22fsumf1o 12404 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^ c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P ^ k
)  ^ c  A
) )
24 elfznn0 10975 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2524adantl 452 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2625nn0cnd 10169 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
271adantr 451 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
2826, 27mulcomd 9003 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
k  x.  A )  =  ( A  x.  k ) )
2928oveq2d 5997 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^ c  ( k  x.  A ) )  =  ( P  ^ c  ( A  x.  k ) ) )
304adantr 451 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  NN )
3130nnrpd 10540 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  RR+ )
3225nn0red 10168 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  RR )
3331, 32, 27cxpmuld 20303 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^ c  ( k  x.  A ) )  =  ( ( P  ^ c  k )  ^ c  A ) )
3430nncnd 9909 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  CC )
35 cxpexp 20237 . . . . . . 7  |-  ( ( P  e.  CC  /\  k  e.  NN0 )  -> 
( P  ^ c 
k )  =  ( P ^ k ) )
3634, 25, 35syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^ c  k )  =  ( P ^
k ) )
3736oveq1d 5996 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P  ^ c 
k )  ^ c  A )  =  ( ( P ^ k
)  ^ c  A
) )
3833, 37eqtrd 2398 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^ c  ( k  x.  A ) )  =  ( ( P ^ k )  ^ c  A ) )
3934, 27, 25cxpmul2d 20278 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^ c  ( A  x.  k ) )  =  ( ( P  ^ c  A ) ^ k ) )
4029, 38, 393eqtr3d 2406 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P ^ k
)  ^ c  A
)  =  ( ( P  ^ c  A
) ^ k ) )
4140sumeq2dv 12384 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N
) ( ( P ^ k )  ^ c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P  ^ c  A ) ^ k
) )
428, 23, 413eqtrd 2402 1  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^ c  A ) ^ k
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   {crab 2632   class class class wbr 4125    e. cmpt 4179   -1-1-onto->wf1o 5357   ` cfv 5358  (class class class)co 5981   CCcc 8882   0cc0 8884    x. cmul 8889   NNcn 9893   NN0cn0 10114   ...cfz 10935   ^cexp 11269   sum_csu 12366    || cdivides 12739   Primecprime 12966    ^ c ccxp 20131    sigma csgm 20556
This theorem is referenced by:  1sgmprm  20661  1sgm2ppw  20662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-sup 7341  df-oi 7372  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-q 10468  df-rp 10506  df-xneg 10603  df-xadd 10604  df-xmul 10605  df-ioo 10813  df-ioc 10814  df-ico 10815  df-icc 10816  df-fz 10936  df-fzo 11026  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-fac 11454  df-bc 11481  df-hash 11506  df-shft 11769  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-limsup 12152  df-clim 12169  df-rlim 12170  df-sum 12367  df-ef 12557  df-sin 12559  df-cos 12560  df-pi 12562  df-dvds 12740  df-gcd 12894  df-prm 12967  df-pc 13098  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-hom 13440  df-cco 13441  df-rest 13537  df-topn 13538  df-topgen 13554  df-pt 13555  df-prds 13558  df-xrs 13613  df-0g 13614  df-gsum 13615  df-qtop 13620  df-imas 13621  df-xps 13623  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-submnd 14626  df-mulg 14702  df-cntz 15003  df-cmn 15301  df-xmet 16586  df-met 16587  df-bl 16588  df-mopn 16589  df-fbas 16590  df-fg 16591  df-cnfld 16594  df-top 16853  df-bases 16855  df-topon 16856  df-topsp 16857  df-cld 16973  df-ntr 16974  df-cls 16975  df-nei 17052  df-lp 17085  df-perf 17086  df-cn 17174  df-cnp 17175  df-haus 17260  df-tx 17474  df-hmeo 17663  df-fil 17754  df-fm 17846  df-flim 17847  df-flf 17848  df-xms 18098  df-ms 18099  df-tms 18100  df-cncf 18596  df-limc 19431  df-dv 19432  df-log 20132  df-cxp 20133  df-sgm 20562
  Copyright terms: Public domain W3C validator