HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shatomistici Unicode version

Theorem shatomistici 22902
Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
shatomistic.1  |-  A  e.  SH
Assertion
Ref Expression
shatomistici  |-  A  =  ( span `  U. { x  e. HAtoms  |  x 
C_  A } )
Distinct variable group:    x, A

Proof of Theorem shatomistici
StepHypRef Expression
1 eleq1 2318 . . . 4  |-  ( y  =  0h  ->  (
y  e.  ( span `  U. { x  e. HAtoms  |  x  C_  A }
)  <->  0h  e.  ( span `  U. { x  e. HAtoms  |  x  C_  A } ) ) )
2 shatomistic.1 . . . . . . . . 9  |-  A  e.  SH
32sheli 21754 . . . . . . . 8  |-  ( y  e.  A  ->  y  e.  ~H )
4 spansnsh 22101 . . . . . . . 8  |-  ( y  e.  ~H  ->  ( span `  { y } )  e.  SH )
5 spanid 21887 . . . . . . . 8  |-  ( (
span `  { y } )  e.  SH  ->  ( span `  ( span `  { y } ) )  =  (
span `  { y } ) )
63, 4, 53syl 20 . . . . . . 7  |-  ( y  e.  A  ->  ( span `  ( span `  {
y } ) )  =  ( span `  {
y } ) )
76adantr 453 . . . . . 6  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
( span `  ( span `  { y } ) )  =  ( span `  { y } ) )
8 spansna 22891 . . . . . . . . 9  |-  ( ( y  e.  ~H  /\  y  =/=  0h )  -> 
( span `  { y } )  e. HAtoms )
93, 8sylan 459 . . . . . . . 8  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
( span `  { y } )  e. HAtoms )
10 spansnss 22111 . . . . . . . . . 10  |-  ( ( A  e.  SH  /\  y  e.  A )  ->  ( span `  {
y } )  C_  A )
112, 10mpan 654 . . . . . . . . 9  |-  ( y  e.  A  ->  ( span `  { y } )  C_  A )
1211adantr 453 . . . . . . . 8  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
( span `  { y } )  C_  A
)
13 sseq1 3174 . . . . . . . . 9  |-  ( x  =  ( span `  {
y } )  -> 
( x  C_  A  <->  (
span `  { y } )  C_  A
) )
1413elrab 2898 . . . . . . . 8  |-  ( (
span `  { y } )  e.  {
x  e. HAtoms  |  x  C_  A }  <->  ( ( span `  { y } )  e. HAtoms  /\  ( span `  { y } )  C_  A )
)
159, 12, 14sylanbrc 648 . . . . . . 7  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
( span `  { y } )  e.  {
x  e. HAtoms  |  x  C_  A } )
16 elssuni 3829 . . . . . . 7  |-  ( (
span `  { y } )  e.  {
x  e. HAtoms  |  x  C_  A }  ->  ( span `  { y } )  C_  U. { x  e. HAtoms  |  x  C_  A } )
17 atssch 22884 . . . . . . . . . . 11  |- HAtoms  C_  CH
18 chsssh 21766 . . . . . . . . . . 11  |-  CH  C_  SH
1917, 18sstri 3163 . . . . . . . . . 10  |- HAtoms  C_  SH
20 rabss2 3231 . . . . . . . . . 10  |-  (HAtoms  C_  SH  ->  { x  e. HAtoms  |  x 
C_  A }  C_  { x  e.  SH  |  x  C_  A } )
21 uniss 3822 . . . . . . . . . 10  |-  ( { x  e. HAtoms  |  x  C_  A }  C_  { x  e.  SH  |  x  C_  A }  ->  U. {
x  e. HAtoms  |  x  C_  A }  C_  U. {
x  e.  SH  |  x  C_  A } )
2219, 20, 21mp2b 11 . . . . . . . . 9  |-  U. {
x  e. HAtoms  |  x  C_  A }  C_  U. {
x  e.  SH  |  x  C_  A }
23 unimax 3835 . . . . . . . . . . 11  |-  ( A  e.  SH  ->  U. {
x  e.  SH  |  x  C_  A }  =  A )
242, 23ax-mp 10 . . . . . . . . . 10  |-  U. {
x  e.  SH  |  x  C_  A }  =  A
252shssii 21753 . . . . . . . . . 10  |-  A  C_  ~H
2624, 25eqsstri 3183 . . . . . . . . 9  |-  U. {
x  e.  SH  |  x  C_  A }  C_  ~H
2722, 26sstri 3163 . . . . . . . 8  |-  U. {
x  e. HAtoms  |  x  C_  A }  C_  ~H
28 spanss 21888 . . . . . . . 8  |-  ( ( U. { x  e. HAtoms  |  x  C_  A }  C_ 
~H  /\  ( span `  { y } ) 
C_  U. { x  e. HAtoms  |  x  C_  A }
)  ->  ( span `  ( span `  {
y } ) ) 
C_  ( span `  U. { x  e. HAtoms  |  x 
C_  A } ) )
2927, 28mpan 654 . . . . . . 7  |-  ( (
span `  { y } )  C_  U. {
x  e. HAtoms  |  x  C_  A }  ->  ( span `  ( span `  {
y } ) ) 
C_  ( span `  U. { x  e. HAtoms  |  x 
C_  A } ) )
3015, 16, 293syl 20 . . . . . 6  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
( span `  ( span `  { y } ) )  C_  ( span ` 
U. { x  e. HAtoms  |  x  C_  A }
) )
317, 30eqsstr3d 3188 . . . . 5  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
( span `  { y } )  C_  ( span `  U. { x  e. HAtoms  |  x  C_  A } ) )
32 spansnid 22103 . . . . . . 7  |-  ( y  e.  ~H  ->  y  e.  ( span `  {
y } ) )
333, 32syl 17 . . . . . 6  |-  ( y  e.  A  ->  y  e.  ( span `  {
y } ) )
3433adantr 453 . . . . 5  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
y  e.  ( span `  { y } ) )
3531, 34sseldd 3156 . . . 4  |-  ( ( y  e.  A  /\  y  =/=  0h )  -> 
y  e.  ( span `  U. { x  e. HAtoms  |  x  C_  A }
) )
36 spancl 21876 . . . . . 6  |-  ( U. { x  e. HAtoms  |  x 
C_  A }  C_  ~H  ->  ( span `  U. { x  e. HAtoms  |  x 
C_  A } )  e.  SH )
37 sh0 21756 . . . . . 6  |-  ( (
span `  U. { x  e. HAtoms  |  x  C_  A } )  e.  SH  ->  0h  e.  ( span `  U. { x  e. HAtoms  |  x  C_  A }
) )
3827, 36, 37mp2b 11 . . . . 5  |-  0h  e.  ( span `  U. { x  e. HAtoms  |  x  C_  A } )
3938a1i 12 . . . 4  |-  ( y  e.  A  ->  0h  e.  ( span `  U. { x  e. HAtoms  |  x 
C_  A } ) )
401, 35, 39pm2.61ne 2496 . . 3  |-  ( y  e.  A  ->  y  e.  ( span `  U. { x  e. HAtoms  |  x 
C_  A } ) )
4140ssriv 3159 . 2  |-  A  C_  ( span `  U. { x  e. HAtoms  |  x  C_  A } )
42 spanss 21888 . . . 4  |-  ( ( U. { x  e.  SH  |  x  C_  A }  C_  ~H  /\  U. { x  e. HAtoms  |  x 
C_  A }  C_  U. { x  e.  SH  |  x  C_  A }
)  ->  ( span ` 
U. { x  e. HAtoms  |  x  C_  A }
)  C_  ( span ` 
U. { x  e.  SH  |  x  C_  A } ) )
4326, 22, 42mp2an 656 . . 3  |-  ( span `  U. { x  e. HAtoms  |  x  C_  A }
)  C_  ( span ` 
U. { x  e.  SH  |  x  C_  A } )
4424fveq2i 5461 . . . 4  |-  ( span `  U. { x  e.  SH  |  x  C_  A } )  =  (
span `  A )
45 spanid 21887 . . . . 5  |-  ( A  e.  SH  ->  ( span `  A )  =  A )
462, 45ax-mp 10 . . . 4  |-  ( span `  A )  =  A
4744, 46eqtri 2278 . . 3  |-  ( span `  U. { x  e.  SH  |  x  C_  A } )  =  A
4843, 47sseqtri 3185 . 2  |-  ( span `  U. { x  e. HAtoms  |  x  C_  A }
)  C_  A
4941, 48eqssi 3170 1  |-  A  =  ( span `  U. { x  e. HAtoms  |  x 
C_  A } )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   {crab 2522    C_ wss 3127   {csn 3614   U.cuni 3801   ` cfv 4673   ~Hchil 21460   0hc0v 21465   SHcsh 21469   CHcch 21470   spancspn 21473  HAtomscat 21506
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785  ax-hilex 21540  ax-hfvadd 21541  ax-hvcom 21542  ax-hvass 21543  ax-hv0cl 21544  ax-hvaddid 21545  ax-hfvmul 21546  ax-hvmulid 21547  ax-hvmulass 21548  ax-hvdistr1 21549  ax-hvdistr2 21550  ax-hvmul0 21551  ax-hfi 21619  ax-his1 21622  ax-his2 21623  ax-his3 21624  ax-his4 21625  ax-hcompl 21742
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-seq 11014  df-exp 11072  df-hash 11305  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-rlim 11929  df-sum 12125  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-cn 16920  df-cnp 16921  df-lm 16922  df-haus 17006  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cfil 18644  df-cau 18645  df-cmet 18646  df-grpo 20819  df-gid 20820  df-ginv 20821  df-gdiv 20822  df-ablo 20910  df-subgo 20930  df-vc 21063  df-nv 21109  df-va 21112  df-ba 21113  df-sm 21114  df-0v 21115  df-vs 21116  df-nmcv 21117  df-ims 21118  df-dip 21235  df-ssp 21259  df-ph 21352  df-cbn 21403  df-hnorm 21509  df-hba 21510  df-hvsub 21512  df-hlim 21513  df-hcau 21514  df-sh 21747  df-ch 21762  df-oc 21792  df-ch0 21793  df-span 21849  df-cv 22820  df-at 22879
  Copyright terms: Public domain W3C validator