HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Unicode version

Theorem shmodsi 22023
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1  |-  A  e.  SH
shmod.2  |-  B  e.  SH
shmod.3  |-  C  e.  SH
Assertion
Ref Expression
shmodsi  |-  ( A 
C_  C  ->  (
( A  +H  B
)  i^i  C )  C_  ( A  +H  ( B  i^i  C ) ) )

Proof of Theorem shmodsi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3392 . . 3  |-  ( z  e.  ( ( A  +H  B )  i^i 
C )  <->  ( z  e.  ( A  +H  B
)  /\  z  e.  C ) )
2 shmod.1 . . . . . . 7  |-  A  e.  SH
3 shmod.2 . . . . . . 7  |-  B  e.  SH
42, 3shseli 21950 . . . . . 6  |-  ( z  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  z  =  ( x  +h  y
) )
5 shmod.3 . . . . . . . . . . . . . . 15  |-  C  e.  SH
65sheli 21848 . . . . . . . . . . . . . 14  |-  ( z  e.  C  ->  z  e.  ~H )
72sheli 21848 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  x  e.  ~H )
83sheli 21848 . . . . . . . . . . . . . 14  |-  ( y  e.  B  ->  y  e.  ~H )
9 hvsubadd 21711 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ~H  /\  x  e.  ~H  /\  y  e.  ~H )  ->  (
( z  -h  x
)  =  y  <->  ( x  +h  y )  =  z ) )
106, 7, 8, 9syl3an 1224 . . . . . . . . . . . . 13  |-  ( ( z  e.  C  /\  x  e.  A  /\  y  e.  B )  ->  ( ( z  -h  x )  =  y  <-> 
( x  +h  y
)  =  z ) )
11 eqcom 2318 . . . . . . . . . . . . 13  |-  ( ( x  +h  y )  =  z  <->  z  =  ( x  +h  y
) )
1210, 11syl6bb 252 . . . . . . . . . . . 12  |-  ( ( z  e.  C  /\  x  e.  A  /\  y  e.  B )  ->  ( ( z  -h  x )  =  y  <-> 
z  =  ( x  +h  y ) ) )
13123expb 1152 . . . . . . . . . . 11  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
( z  -h  x
)  =  y  <->  z  =  ( x  +h  y
) ) )
145, 2shsvsi 22001 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  C  /\  x  e.  A )  ->  ( z  -h  x
)  e.  ( C  +H  A ) )
155, 2shscomi 21997 . . . . . . . . . . . . . . . . . . . 20  |-  ( C  +H  A )  =  ( A  +H  C
)
1614, 15syl6eleq 2406 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  C  /\  x  e.  A )  ->  ( z  -h  x
)  e.  ( A  +H  C ) )
172, 5shlesb1i 22020 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A 
C_  C  <->  ( A  +H  C )  =  C )
1817biimpi 186 . . . . . . . . . . . . . . . . . . . 20  |-  ( A 
C_  C  ->  ( A  +H  C )  =  C )
1918eleq2d 2383 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
C_  C  ->  (
( z  -h  x
)  e.  ( A  +H  C )  <->  ( z  -h  x )  e.  C
) )
2016, 19syl5ib 210 . . . . . . . . . . . . . . . . . 18  |-  ( A 
C_  C  ->  (
( z  e.  C  /\  x  e.  A
)  ->  ( z  -h  x )  e.  C
) )
21 eleq1 2376 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  -h  x )  =  y  ->  (
( z  -h  x
)  e.  C  <->  y  e.  C ) )
2221biimpd 198 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  -h  x )  =  y  ->  (
( z  -h  x
)  e.  C  -> 
y  e.  C ) )
2320, 22sylan9 638 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( z  e.  C  /\  x  e.  A )  ->  y  e.  C ) )
2423anim2d 548 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( y  e.  B  /\  (
z  e.  C  /\  x  e.  A )
)  ->  ( y  e.  B  /\  y  e.  C ) ) )
25 elin 3392 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e.  C ) )
2624, 25syl6ibr 218 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( y  e.  B  /\  (
z  e.  C  /\  x  e.  A )
)  ->  y  e.  ( B  i^i  C ) ) )
2726ex 423 . . . . . . . . . . . . . 14  |-  ( A 
C_  C  ->  (
( z  -h  x
)  =  y  -> 
( ( y  e.  B  /\  ( z  e.  C  /\  x  e.  A ) )  -> 
y  e.  ( B  i^i  C ) ) ) )
2827com13 74 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  ( z  e.  C  /\  x  e.  A
) )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
2928ancoms 439 . . . . . . . . . . . 12  |-  ( ( ( z  e.  C  /\  x  e.  A
)  /\  y  e.  B )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3029anasss 628 . . . . . . . . . . 11  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3113, 30sylbird 226 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
z  =  ( x  +h  y )  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3231imp 418 . . . . . . . . 9  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) )
333, 5shincli 21996 . . . . . . . . . . . . . . 15  |-  ( B  i^i  C )  e.  SH
342, 33shsvai 21998 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  y  e.  ( B  i^i  C ) )  -> 
( x  +h  y
)  e.  ( A  +H  ( B  i^i  C ) ) )
35 eleq1 2376 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  +h  y )  ->  (
z  e.  ( A  +H  ( B  i^i  C ) )  <->  ( x  +h  y )  e.  ( A  +H  ( B  i^i  C ) ) ) )
3634, 35syl5ibr 212 . . . . . . . . . . . . 13  |-  ( z  =  ( x  +h  y )  ->  (
( x  e.  A  /\  y  e.  ( B  i^i  C ) )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
3736exp3a 425 . . . . . . . . . . . 12  |-  ( z  =  ( x  +h  y )  ->  (
x  e.  A  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
3837com12 27 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
z  =  ( x  +h  y )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
3938ad2antrl 708 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
z  =  ( x  +h  y )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4039imp 418 . . . . . . . . 9  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4132, 40syld 40 . . . . . . . 8  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4241exp31 587 . . . . . . 7  |-  ( z  e.  C  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( z  =  ( x  +h  y )  ->  ( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) ) )
4342rexlimdvv 2707 . . . . . 6  |-  ( z  e.  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x  +h  y )  ->  ( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
444, 43syl5bi 208 . . . . 5  |-  ( z  e.  C  ->  (
z  e.  ( A  +H  B )  -> 
( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4544com13 74 . . . 4  |-  ( A 
C_  C  ->  (
z  e.  ( A  +H  B )  -> 
( z  e.  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4645imp3a 420 . . 3  |-  ( A 
C_  C  ->  (
( z  e.  ( A  +H  B )  /\  z  e.  C
)  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
471, 46syl5bi 208 . 2  |-  ( A 
C_  C  ->  (
z  e.  ( ( A  +H  B )  i^i  C )  -> 
z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4847ssrdv 3219 1  |-  ( A 
C_  C  ->  (
( A  +H  B
)  i^i  C )  C_  ( A  +H  ( B  i^i  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   E.wrex 2578    i^i cin 3185    C_ wss 3186  (class class class)co 5900   ~Hchil 21554    +h cva 21555    -h cmv 21560   SHcsh 21563    +H cph 21566
This theorem is referenced by:  shmodi  22024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-hilex 21634  ax-hfvadd 21635  ax-hvcom 21636  ax-hvass 21637  ax-hv0cl 21638  ax-hvaddid 21639  ax-hfvmul 21640  ax-hvmulid 21641  ax-hvdistr1 21643  ax-hvdistr2 21644  ax-hvmul0 21645
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-ltxr 8917  df-sub 9084  df-neg 9085  df-nn 9792  df-grpo 20911  df-ablo 21002  df-hvsub 21606  df-hlim 21607  df-sh 21841  df-ch 21856  df-shs 21942
  Copyright terms: Public domain W3C validator