HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Unicode version

Theorem shsel3 21890
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem shsel3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 shsel 21889 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. z  e.  B  C  =  ( x  +h  z ) ) )
2 id 19 . . . . . . . 8  |-  ( C  =  ( x  +h  z )  ->  C  =  ( x  +h  z ) )
3 shel 21786 . . . . . . . . . . 11  |-  ( ( A  e.  SH  /\  x  e.  A )  ->  x  e.  ~H )
4 shel 21786 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  z  e.  ~H )
5 hvaddsubval 21608 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
63, 4, 5syl2an 463 . . . . . . . . . 10  |-  ( ( ( A  e.  SH  /\  x  e.  A )  /\  ( B  e.  SH  /\  z  e.  B ) )  -> 
( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
76an4s 799 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  ( x  e.  A  /\  z  e.  B ) )  -> 
( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
87anassrs 629 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  (
x  +h  z )  =  ( x  -h  ( -u 1  .h  z
) ) )
92, 8sylan9eqr 2338 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  +h  z ) )  ->  C  =  ( x  -h  ( -u 1  .h  z ) ) )
10 neg1cn 9809 . . . . . . . . . . 11  |-  -u 1  e.  CC
11 shmulcl 21793 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
1210, 11mp3an2 1265 . . . . . . . . . 10  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
1312adantll 694 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  z  e.  B
)  ->  ( -u 1  .h  z )  e.  B
)
1413adantlr 695 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B )
15 oveq2 5828 . . . . . . . . . 10  |-  ( y  =  ( -u 1  .h  z )  ->  (
x  -h  y )  =  ( x  -h  ( -u 1  .h  z
) ) )
1615eqeq2d 2295 . . . . . . . . 9  |-  ( y  =  ( -u 1  .h  z )  ->  ( C  =  ( x  -h  y )  <->  C  =  ( x  -h  ( -u 1  .h  z ) ) ) )
1716rspcev 2885 . . . . . . . 8  |-  ( ( ( -u 1  .h  z )  e.  B  /\  C  =  (
x  -h  ( -u
1  .h  z ) ) )  ->  E. y  e.  B  C  =  ( x  -h  y
) )
1814, 17sylan 457 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  -h  ( -u 1  .h  z
) ) )  ->  E. y  e.  B  C  =  ( x  -h  y ) )
199, 18syldan 456 . . . . . 6  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  +h  z ) )  ->  E. y  e.  B  C  =  ( x  -h  y ) )
2019ex 423 . . . . 5  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  ( C  =  ( x  +h  z )  ->  E. y  e.  B  C  =  ( x  -h  y
) ) )
2120rexlimdva 2668 . . . 4  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. z  e.  B  C  =  ( x  +h  z )  ->  E. y  e.  B  C  =  ( x  -h  y
) ) )
22 id 19 . . . . . . . 8  |-  ( C  =  ( x  -h  y )  ->  C  =  ( x  -h  y ) )
23 shel 21786 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  y  e.  B )  ->  y  e.  ~H )
24 hvsubval 21592 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
253, 23, 24syl2an 463 . . . . . . . . . 10  |-  ( ( ( A  e.  SH  /\  x  e.  A )  /\  ( B  e.  SH  /\  y  e.  B ) )  -> 
( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
2625an4s 799 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
2726anassrs 629 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  (
x  -h  y )  =  ( x  +h  ( -u 1  .h  y
) ) )
2822, 27sylan9eqr 2338 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  -h  y ) )  ->  C  =  ( x  +h  ( -u 1  .h  y ) ) )
29 shmulcl 21793 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B
)
3010, 29mp3an2 1265 . . . . . . . . . 10  |-  ( ( B  e.  SH  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B
)
3130adantll 694 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  y  e.  B
)  ->  ( -u 1  .h  y )  e.  B
)
3231adantlr 695 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B )
33 oveq2 5828 . . . . . . . . . 10  |-  ( z  =  ( -u 1  .h  y )  ->  (
x  +h  z )  =  ( x  +h  ( -u 1  .h  y
) ) )
3433eqeq2d 2295 . . . . . . . . 9  |-  ( z  =  ( -u 1  .h  y )  ->  ( C  =  ( x  +h  z )  <->  C  =  ( x  +h  ( -u 1  .h  y ) ) ) )
3534rspcev 2885 . . . . . . . 8  |-  ( ( ( -u 1  .h  y )  e.  B  /\  C  =  (
x  +h  ( -u
1  .h  y ) ) )  ->  E. z  e.  B  C  =  ( x  +h  z
) )
3632, 35sylan 457 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  +h  ( -u 1  .h  y
) ) )  ->  E. z  e.  B  C  =  ( x  +h  z ) )
3728, 36syldan 456 . . . . . 6  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  -h  y ) )  ->  E. z  e.  B  C  =  ( x  +h  z ) )
3837ex 423 . . . . 5  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  ( C  =  ( x  -h  y )  ->  E. z  e.  B  C  =  ( x  +h  z
) ) )
3938rexlimdva 2668 . . . 4  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. y  e.  B  C  =  ( x  -h  y )  ->  E. z  e.  B  C  =  ( x  +h  z
) ) )
4021, 39impbid 183 . . 3  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. z  e.  B  C  =  ( x  +h  z )  <->  E. y  e.  B  C  =  ( x  -h  y
) ) )
4140rexbidva 2561 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( E. x  e.  A  E. z  e.  B  C  =  ( x  +h  z )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
421, 41bitrd 244 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   E.wrex 2545  (class class class)co 5820   CCcc 8731   1c1 8734   -ucneg 9034   ~Hchil 21495    +h cva 21496    .h csm 21497    -h cmv 21501   SHcsh 21504    +H cph 21507
This theorem is referenced by:  pjimai  22752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-hilex 21575  ax-hfvadd 21576  ax-hvcom 21577  ax-hvass 21578  ax-hv0cl 21579  ax-hvaddid 21580  ax-hfvmul 21581  ax-hvmulid 21582  ax-hvmulass 21583  ax-hvdistr2 21585  ax-hvmul0 21586
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-ltxr 8868  df-sub 9035  df-neg 9036  df-grpo 20852  df-ablo 20943  df-hvsub 21547  df-sh 21782  df-shs 21883
  Copyright terms: Public domain W3C validator