HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Structured version   Unicode version

Theorem shsel3 22855
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem shsel3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 shsel 22854 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. z  e.  B  C  =  ( x  +h  z ) ) )
2 id 21 . . . . . . . 8  |-  ( C  =  ( x  +h  z )  ->  C  =  ( x  +h  z ) )
3 shel 22751 . . . . . . . . . . 11  |-  ( ( A  e.  SH  /\  x  e.  A )  ->  x  e.  ~H )
4 shel 22751 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  z  e.  ~H )
5 hvaddsubval 22573 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
63, 4, 5syl2an 465 . . . . . . . . . 10  |-  ( ( ( A  e.  SH  /\  x  e.  A )  /\  ( B  e.  SH  /\  z  e.  B ) )  -> 
( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
76an4s 801 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  ( x  e.  A  /\  z  e.  B ) )  -> 
( x  +h  z
)  =  ( x  -h  ( -u 1  .h  z ) ) )
87anassrs 631 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  (
x  +h  z )  =  ( x  -h  ( -u 1  .h  z
) ) )
92, 8sylan9eqr 2497 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  +h  z ) )  ->  C  =  ( x  -h  ( -u 1  .h  z ) ) )
10 neg1cn 10105 . . . . . . . . . . 11  |-  -u 1  e.  CC
11 shmulcl 22758 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
1210, 11mp3an2 1268 . . . . . . . . . 10  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
1312adantll 696 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  z  e.  B
)  ->  ( -u 1  .h  z )  e.  B
)
1413adantlr 697 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B )
15 oveq2 6125 . . . . . . . . . 10  |-  ( y  =  ( -u 1  .h  z )  ->  (
x  -h  y )  =  ( x  -h  ( -u 1  .h  z
) ) )
1615eqeq2d 2454 . . . . . . . . 9  |-  ( y  =  ( -u 1  .h  z )  ->  ( C  =  ( x  -h  y )  <->  C  =  ( x  -h  ( -u 1  .h  z ) ) ) )
1716rspcev 3061 . . . . . . . 8  |-  ( ( ( -u 1  .h  z )  e.  B  /\  C  =  (
x  -h  ( -u
1  .h  z ) ) )  ->  E. y  e.  B  C  =  ( x  -h  y
) )
1814, 17sylan 459 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  -h  ( -u 1  .h  z
) ) )  ->  E. y  e.  B  C  =  ( x  -h  y ) )
199, 18syldan 458 . . . . . 6  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  /\  C  =  ( x  +h  z ) )  ->  E. y  e.  B  C  =  ( x  -h  y ) )
2019ex 425 . . . . 5  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  z  e.  B )  ->  ( C  =  ( x  +h  z )  ->  E. y  e.  B  C  =  ( x  -h  y
) ) )
2120rexlimdva 2837 . . . 4  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. z  e.  B  C  =  ( x  +h  z )  ->  E. y  e.  B  C  =  ( x  -h  y
) ) )
22 id 21 . . . . . . . 8  |-  ( C  =  ( x  -h  y )  ->  C  =  ( x  -h  y ) )
23 shel 22751 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  y  e.  B )  ->  y  e.  ~H )
24 hvsubval 22557 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
253, 23, 24syl2an 465 . . . . . . . . . 10  |-  ( ( ( A  e.  SH  /\  x  e.  A )  /\  ( B  e.  SH  /\  y  e.  B ) )  -> 
( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
2625an4s 801 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
2726anassrs 631 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  (
x  -h  y )  =  ( x  +h  ( -u 1  .h  y
) ) )
2822, 27sylan9eqr 2497 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  -h  y ) )  ->  C  =  ( x  +h  ( -u 1  .h  y ) ) )
29 shmulcl 22758 . . . . . . . . . . 11  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B
)
3010, 29mp3an2 1268 . . . . . . . . . 10  |-  ( ( B  e.  SH  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B
)
3130adantll 696 . . . . . . . . 9  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  y  e.  B
)  ->  ( -u 1  .h  y )  e.  B
)
3231adantlr 697 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  ( -u 1  .h  y )  e.  B )
33 oveq2 6125 . . . . . . . . . 10  |-  ( z  =  ( -u 1  .h  y )  ->  (
x  +h  z )  =  ( x  +h  ( -u 1  .h  y
) ) )
3433eqeq2d 2454 . . . . . . . . 9  |-  ( z  =  ( -u 1  .h  y )  ->  ( C  =  ( x  +h  z )  <->  C  =  ( x  +h  ( -u 1  .h  y ) ) ) )
3534rspcev 3061 . . . . . . . 8  |-  ( ( ( -u 1  .h  y )  e.  B  /\  C  =  (
x  +h  ( -u
1  .h  y ) ) )  ->  E. z  e.  B  C  =  ( x  +h  z
) )
3632, 35sylan 459 . . . . . . 7  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  +h  ( -u 1  .h  y
) ) )  ->  E. z  e.  B  C  =  ( x  +h  z ) )
3728, 36syldan 458 . . . . . 6  |-  ( ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  /\  C  =  ( x  -h  y ) )  ->  E. z  e.  B  C  =  ( x  +h  z ) )
3837ex 425 . . . . 5  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A )  /\  y  e.  B )  ->  ( C  =  ( x  -h  y )  ->  E. z  e.  B  C  =  ( x  +h  z
) ) )
3938rexlimdva 2837 . . . 4  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. y  e.  B  C  =  ( x  -h  y )  ->  E. z  e.  B  C  =  ( x  +h  z
) ) )
4021, 39impbid 185 . . 3  |-  ( ( ( A  e.  SH  /\  B  e.  SH )  /\  x  e.  A
)  ->  ( E. z  e.  B  C  =  ( x  +h  z )  <->  E. y  e.  B  C  =  ( x  -h  y
) ) )
4140rexbidva 2729 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( E. x  e.  A  E. z  e.  B  C  =  ( x  +h  z )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
421, 41bitrd 246 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  -h  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1654    e. wcel 1728   E.wrex 2713  (class class class)co 6117   CCcc 9026   1c1 9029   -ucneg 9330   ~Hchil 22460    +h cva 22461    .h csm 22462    -h cmv 22466   SHcsh 22469    +H cph 22472
This theorem is referenced by:  pjimai  23717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-hilex 22540  ax-hfvadd 22541  ax-hvcom 22542  ax-hvass 22543  ax-hv0cl 22544  ax-hvaddid 22545  ax-hfvmul 22546  ax-hvmulid 22547  ax-hvmulass 22548  ax-hvdistr2 22550  ax-hvmul0 22551
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-po 4538  df-so 4539  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-riota 6585  df-er 6941  df-en 7146  df-dom 7147  df-sdom 7148  df-pnf 9160  df-mnf 9161  df-ltxr 9163  df-sub 9331  df-neg 9332  df-grpo 21817  df-ablo 21908  df-hvsub 22512  df-sh 22747  df-shs 22848
  Copyright terms: Public domain W3C validator