HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsval Unicode version

Theorem shsval 21907
Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
shsval  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  (  +h  " ( A  X.  B ) ) )

Proof of Theorem shsval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq12 4724 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  X.  y
)  =  ( A  X.  B ) )
21imaeq2d 5028 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  (  +h  " (
x  X.  y ) )  =  (  +h  " ( A  X.  B ) ) )
3 df-shs 21903 . 2  |-  +H  =  ( x  e.  SH ,  y  e.  SH  |->  (  +h  " ( x  X.  y ) ) )
4 hilablo 21755 . . 3  |-  +h  e.  AbelOp
5 imaexg 5042 . . 3  |-  (  +h  e.  AbelOp  ->  (  +h  " ( A  X.  B ) )  e.  _V )
64, 5ax-mp 8 . 2  |-  (  +h  " ( A  X.  B ) )  e. 
_V
72, 3, 6ovmpt2a 5994 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  (  +h  " ( A  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    X. cxp 4703   "cima 4708  (class class class)co 5874   AbelOpcablo 20964    +h cva 21516   SHcsh 21524    +H cph 21527
This theorem is referenced by:  shsss  21908  shsel  21909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-hilex 21595  ax-hfvadd 21596  ax-hvcom 21597  ax-hvass 21598  ax-hv0cl 21599  ax-hvaddid 21600  ax-hfvmul 21601  ax-hvmulid 21602  ax-hvdistr2 21605  ax-hvmul0 21606
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-neg 9056  df-grpo 20874  df-ablo 20965  df-hvsub 21567  df-shs 21903
  Copyright terms: Public domain W3C validator