HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shuni Unicode version

Theorem shuni 21881
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
shuni.1  |-  ( ph  ->  H  e.  SH )
shuni.2  |-  ( ph  ->  K  e.  SH )
shuni.3  |-  ( ph  ->  ( H  i^i  K
)  =  0H )
shuni.4  |-  ( ph  ->  A  e.  H )
shuni.5  |-  ( ph  ->  B  e.  K )
shuni.6  |-  ( ph  ->  C  e.  H )
shuni.7  |-  ( ph  ->  D  e.  K )
shuni.8  |-  ( ph  ->  ( A  +h  B
)  =  ( C  +h  D ) )
Assertion
Ref Expression
shuni  |-  ( ph  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem shuni
StepHypRef Expression
1 shuni.1 . . . . . . 7  |-  ( ph  ->  H  e.  SH )
2 shuni.4 . . . . . . 7  |-  ( ph  ->  A  e.  H )
3 shuni.6 . . . . . . 7  |-  ( ph  ->  C  e.  H )
4 shsubcl 21802 . . . . . . 7  |-  ( ( H  e.  SH  /\  A  e.  H  /\  C  e.  H )  ->  ( A  -h  C
)  e.  H )
51, 2, 3, 4syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( A  -h  C
)  e.  H )
6 shuni.8 . . . . . . . 8  |-  ( ph  ->  ( A  +h  B
)  =  ( C  +h  D ) )
7 shel 21792 . . . . . . . . . 10  |-  ( ( H  e.  SH  /\  A  e.  H )  ->  A  e.  ~H )
81, 2, 7syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  A  e.  ~H )
9 shuni.2 . . . . . . . . . 10  |-  ( ph  ->  K  e.  SH )
10 shuni.5 . . . . . . . . . 10  |-  ( ph  ->  B  e.  K )
11 shel 21792 . . . . . . . . . 10  |-  ( ( K  e.  SH  /\  B  e.  K )  ->  B  e.  ~H )
129, 10, 11syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  B  e.  ~H )
13 shel 21792 . . . . . . . . . 10  |-  ( ( H  e.  SH  /\  C  e.  H )  ->  C  e.  ~H )
141, 3, 13syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  C  e.  ~H )
15 shuni.7 . . . . . . . . . 10  |-  ( ph  ->  D  e.  K )
16 shel 21792 . . . . . . . . . 10  |-  ( ( K  e.  SH  /\  D  e.  K )  ->  D  e.  ~H )
179, 15, 16syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  D  e.  ~H )
18 hvaddsub4 21659 . . . . . . . . 9  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  B )  =  ( C  +h  D
)  <->  ( A  -h  C )  =  ( D  -h  B ) ) )
198, 12, 14, 17, 18syl22anc 1183 . . . . . . . 8  |-  ( ph  ->  ( ( A  +h  B )  =  ( C  +h  D )  <-> 
( A  -h  C
)  =  ( D  -h  B ) ) )
206, 19mpbid 201 . . . . . . 7  |-  ( ph  ->  ( A  -h  C
)  =  ( D  -h  B ) )
21 shsubcl 21802 . . . . . . . 8  |-  ( ( K  e.  SH  /\  D  e.  K  /\  B  e.  K )  ->  ( D  -h  B
)  e.  K )
229, 15, 10, 21syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( D  -h  B
)  e.  K )
2320, 22eqeltrd 2359 . . . . . 6  |-  ( ph  ->  ( A  -h  C
)  e.  K )
24 elin 3360 . . . . . 6  |-  ( ( A  -h  C )  e.  ( H  i^i  K )  <->  ( ( A  -h  C )  e.  H  /\  ( A  -h  C )  e.  K ) )
255, 23, 24sylanbrc 645 . . . . 5  |-  ( ph  ->  ( A  -h  C
)  e.  ( H  i^i  K ) )
26 shuni.3 . . . . 5  |-  ( ph  ->  ( H  i^i  K
)  =  0H )
2725, 26eleqtrd 2361 . . . 4  |-  ( ph  ->  ( A  -h  C
)  e.  0H )
28 elch0 21835 . . . 4  |-  ( ( A  -h  C )  e.  0H  <->  ( A  -h  C )  =  0h )
2927, 28sylib 188 . . 3  |-  ( ph  ->  ( A  -h  C
)  =  0h )
30 hvsubeq0 21649 . . . 4  |-  ( ( A  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  -h  C )  =  0h  <->  A  =  C ) )
318, 14, 30syl2anc 642 . . 3  |-  ( ph  ->  ( ( A  -h  C )  =  0h  <->  A  =  C ) )
3229, 31mpbid 201 . 2  |-  ( ph  ->  A  =  C )
3320, 29eqtr3d 2319 . . . 4  |-  ( ph  ->  ( D  -h  B
)  =  0h )
34 hvsubeq0 21649 . . . . 5  |-  ( ( D  e.  ~H  /\  B  e.  ~H )  ->  ( ( D  -h  B )  =  0h  <->  D  =  B ) )
3517, 12, 34syl2anc 642 . . . 4  |-  ( ph  ->  ( ( D  -h  B )  =  0h  <->  D  =  B ) )
3633, 35mpbid 201 . . 3  |-  ( ph  ->  D  =  B )
3736eqcomd 2290 . 2  |-  ( ph  ->  B  =  D )
3832, 37jca 518 1  |-  ( ph  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686    i^i cin 3153  (class class class)co 5860   ~Hchil 21501    +h cva 21502   0hc0v 21506    -h cmv 21507   SHcsh 21510   0Hc0h 21517
This theorem is referenced by:  chocunii  21882  pjhthmo  21883  chscllem3  22220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-hilex 21581  ax-hfvadd 21582  ax-hvcom 21583  ax-hvass 21584  ax-hv0cl 21585  ax-hvaddid 21586  ax-hfvmul 21587  ax-hvmulid 21588  ax-hvmulass 21589  ax-hvdistr1 21590  ax-hvdistr2 21591  ax-hvmul0 21592
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-hvsub 21553  df-sh 21788  df-ch0 21834
  Copyright terms: Public domain W3C validator