MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp112 Structured version   Unicode version

Theorem simp112 1087
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp112  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )

Proof of Theorem simp112
StepHypRef Expression
1 simp12 988 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ps )
213ad2ant1 978 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  axcontlem4  25898  ps-2b  30206  llncvrlpln2  30281  4atlem11b  30332  4atlem12b  30335  2lnat  30508  cdlemblem  30517  4atexlemex6  30798  cdleme24  31076  cdleme26ee  31084  cdlemg2idN  31320  cdlemg31c  31423  cdlemk26-3  31630  dihglblem2N  32019
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator