MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp321 Unicode version

Theorem simp321 1105
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp321  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ph )

Proof of Theorem simp321
StepHypRef Expression
1 simp21 988 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ph )
213ad2ant3 978 1  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  dalemcnes  29118  dalempnes  29119  dalemrot  29125  dath2  29205  cdleme18d  29763  cdleme20i  29785  cdleme20j  29786  cdleme20l2  29789  cdleme20l  29790  cdleme20m  29791  cdleme20  29792  cdleme21j  29804  cdleme22eALTN  29813  cdlemk16a  30324  cdlemk12u-2N  30358  cdlemk21-2N  30359  cdlemk22  30361  cdlemk31  30364  cdlemk32  30365  cdlemk11ta  30397  cdlemk11tc  30413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator