Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  simplbi2comgVD Unicode version

Theorem simplbi2comgVD 28737
Description: Virtual deduction proof of simplbi2comg 1363. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. simplbi2comg 1363 is simplbi2comgVD 28737 without virtual deductions and was automatically derived from simplbi2comgVD 28737.
1::  |-  (. ( ph  <->  ( ps  /\  ch ) )  ->.  ( ph  <->  (  ps  /\  ch ) ) ).
2:1:  |-  (. ( ph  <->  ( ps  /\  ch ) )  ->.  ( ( ps  /\  ch  )  ->  ph ) ).
3:2:  |-  (. ( ph  <->  ( ps  /\  ch ) )  ->.  ( ps  ->  ( ch  ->  ph ) ) ).
4:3:  |-  (. ( ph  <->  ( ps  /\  ch ) )  ->.  ( ch  ->  ( ps  ->  ph ) ) ).
qed:4:  |-  ( ( ph  <->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simplbi2comgVD  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )

Proof of Theorem simplbi2comgVD
StepHypRef Expression
1 idn1 28398 . . . . 5  |-  (. ( ph 
<->  ( ps  /\  ch ) )  ->.  ( ph  <->  ( ps  /\  ch )
) ).
2 bi2 189 . . . . 5  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  (
( ps  /\  ch )  ->  ph ) )
31, 2e1_ 28461 . . . 4  |-  (. ( ph 
<->  ( ps  /\  ch ) )  ->.  ( ( ps  /\  ch )  ->  ph ) ).
4 pm3.3 431 . . . 4  |-  ( ( ( ps  /\  ch )  ->  ph )  ->  ( ps  ->  ( ch  ->  ph ) ) )
53, 4e1_ 28461 . . 3  |-  (. ( ph 
<->  ( ps  /\  ch ) )  ->.  ( ps  ->  ( ch  ->  ph )
) ).
6 pm2.04 76 . . 3  |-  ( ( ps  ->  ( ch  ->  ph ) )  -> 
( ch  ->  ( ps  ->  ph ) ) )
75, 6e1_ 28461 . 2  |-  (. ( ph 
<->  ( ps  /\  ch ) )  ->.  ( ch  ->  ( ps  ->  ph )
) ).
87in1 28395 1  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-vd1 28394
  Copyright terms: Public domain W3C validator