MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplim Unicode version

Theorem simplim 143
Description: Simplification. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
Assertion
Ref Expression
simplim  |-  ( -.  ( ph  ->  ps )  ->  ph )

Proof of Theorem simplim
StepHypRef Expression
1 pm2.21 100 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21con1i 121 1  |-  ( -.  ( ph  ->  ps )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem is referenced by:  pm2.5  144  pm2.521  146  impt  149  peirce  172  bi1  178  dfbi1  184  pm4.79  566  imbi12  28581
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
  Copyright terms: Public domain W3C validator