MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplim Unicode version

Theorem simplim 145
Description: Simplification. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
Assertion
Ref Expression
simplim  |-  ( -.  ( ph  ->  ps )  ->  ph )

Proof of Theorem simplim
StepHypRef Expression
1 pm2.21 102 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21con1i 123 1  |-  ( -.  ( ph  ->  ps )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6
This theorem is referenced by:  pm2.5  146  pm2.521  148  impt  151  peirce  174  bi1  180  dfbi1  186  pm4.79  569  imbi12  27319
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
  Copyright terms: Public domain W3C validator