MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinadd Unicode version

Theorem sinadd 12438
Description: Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )

Proof of Theorem sinadd
StepHypRef Expression
1 addcl 8814 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 sinval 12396 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( sin `  ( A  +  B ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) ) )
31, 2syl 17 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  (
2  x.  _i ) ) )
4 2cn 9811 . . . . . . 7  |-  2  e.  CC
54a1i 12 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
6 ax-icn 8791 . . . . . . 7  |-  _i  e.  CC
76a1i 12 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
8 coscl 12401 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
98adantr 453 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  A
)  e.  CC )
10 sincl 12400 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
1110adantl 454 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  B
)  e.  CC )
129, 11mulcld 8850 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( sin `  B ) )  e.  CC )
13 sincl 12400 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1413adantr 453 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  A
)  e.  CC )
15 coscl 12401 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
1615adantl 454 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  B
)  e.  CC )
1714, 16mulcld 8850 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( cos `  B ) )  e.  CC )
1812, 17addcld 8849 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  B ) )  +  ( ( sin `  A )  x.  ( cos `  B ) ) )  e.  CC )
195, 7, 18mulassd 8853 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( _i  x.  ( ( ( cos `  A )  x.  ( sin `  B ) )  +  ( ( sin `  A )  x.  ( cos `  B ) ) ) ) ) )
207, 12, 17adddid 8854 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( _i  x.  ( ( cos `  A )  x.  ( sin `  B
) ) )  +  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) ) ) )
217, 9, 11mul12d 9016 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( cos `  A
)  x.  ( sin `  B ) ) )  =  ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) ) )
2214, 16mulcomd 8851 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( cos `  B ) )  =  ( ( cos `  B
)  x.  ( sin `  A ) ) )
2322oveq2d 5835 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) )  =  ( _i  x.  ( ( cos `  B
)  x.  ( sin `  A ) ) ) )
247, 16, 14mul12d 9016 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( cos `  B
)  x.  ( sin `  A ) ) )  =  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )
2523, 24eqtrd 2316 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( sin `  A
)  x.  ( cos `  B ) ) )  =  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )
2621, 25oveq12d 5837 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( cos `  A
)  x.  ( sin `  B ) ) )  +  ( _i  x.  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )
2720, 26eqtrd 2316 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )
2827oveq2d 5835 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
_i  x.  ( (
( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
2919, 28eqtrd 2316 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
30 mulcl 8816 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( sin `  B )  e.  CC )  -> 
( _i  x.  ( sin `  B ) )  e.  CC )
316, 11, 30sylancr 647 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  B ) )  e.  CC )
329, 31mulcld 8850 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  e.  CC )
33 mulcl 8816 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
346, 14, 33sylancr 647 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  A ) )  e.  CC )
3516, 34mulcld 8850 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
3632, 35addcld 8849 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
37 mulcl 8816 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )  ->  ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  e.  CC )
384, 36, 37sylancr 647 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  e.  CC )
394, 6mulcli 8837 . . . . . 6  |-  ( 2  x.  _i )  e.  CC
4039a1i 12 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  _i )  e.  CC )
41 2ne0 9824 . . . . . . 7  |-  2  =/=  0
42 ine0 9210 . . . . . . 7  |-  _i  =/=  0
434, 6, 41, 42mulne0i 9406 . . . . . 6  |-  ( 2  x.  _i )  =/=  0
4443a1i 12 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  _i )  =/=  0 )
4538, 40, 18, 44divmuld 9553 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( cos `  A )  x.  ( sin `  B
) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) )  <-> 
( ( 2  x.  _i )  x.  (
( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
4629, 45mpbird 225 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  (
2  x.  _i ) )  =  ( ( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )
479, 16mulcld 8850 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
4831, 34mulcld 8850 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
4947, 48addcld 8849 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
5049, 36, 36pnncand 9191 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  -  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )  =  ( ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
51 adddi 8821 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
_i  x.  ( A  +  B ) )  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
526, 51mp3an1 1269 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( A  +  B )
)  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
5352fveq2d 5489 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) ) )
54 simpl 445 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
55 mulcl 8816 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
566, 54, 55sylancr 647 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
57 simpr 449 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
58 mulcl 8816 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
596, 57, 58sylancr 647 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
60 efadd 12369 . . . . . . . 8  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
6156, 59, 60syl2anc 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
62 efival 12426 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
63 efival 12426 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( exp `  ( _i  x.  B ) )  =  ( ( cos `  B
)  +  ( _i  x.  ( sin `  B
) ) ) )
6462, 63oveqan12d 5838 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) ) )
659, 34, 16, 31muladdd 9232 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
6664, 65eqtrd 2316 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) ) )
6753, 61, 663eqtrd 2320 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
686negcli 9109 . . . . . . . . 9  |-  -u _i  e.  CC
69 adddi 8821 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
7068, 69mp3an1 1269 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
7170fveq2d 5489 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( exp `  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) ) )
72 mulcl 8816 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
7368, 54, 72sylancr 647 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
74 mulcl 8816 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
7568, 57, 74sylancr 647 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
76 efadd 12369 . . . . . . . 8  |-  ( ( ( -u _i  x.  A )  e.  CC  /\  ( -u _i  x.  B )  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
7773, 75, 76syl2anc 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
78 efmival 12427 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  =  ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) )
79 efmival 12427 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( exp `  ( -u _i  x.  B ) )  =  ( ( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) )
8078, 79oveqan12d 5838 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) )  x.  (
( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) ) )
819, 34, 16, 31mulsubd 9233 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  -  (
_i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  -  (
_i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8280, 81eqtrd 2316 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8371, 77, 823eqtrd 2320 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8467, 83oveq12d 5837 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  -  (
( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  -  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
85362timesd 9949 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8650, 84, 853eqtr4d 2326 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  -  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
8786oveq1d 5834 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) )  =  ( ( 2  x.  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  (
2  x.  _i ) ) )
8817, 12addcomd 9009 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) )  =  ( ( ( cos `  A
)  x.  ( sin `  B ) )  +  ( ( sin `  A
)  x.  ( cos `  B ) ) ) )
8946, 87, 883eqtr4d 2326 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  -  ( exp `  ( -u _i  x.  ( A  +  B
) ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( sin `  A )  x.  ( cos `  B ) )  +  ( ( cos `  A )  x.  ( sin `  B ) ) ) )
903, 89eqtrd 2316 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  ( A  +  B )
)  =  ( ( ( sin `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( sin `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1628    e. wcel 1688    =/= wne 2447   ` cfv 5221  (class class class)co 5819   CCcc 8730   0cc0 8732   _ici 8734    + caddc 8735    x. cmul 8737    - cmin 9032   -ucneg 9033    / cdiv 9418   2c2 9790   expce 12337   sincsin 12339   cosccos 12340
This theorem is referenced by:  tanadd  12441  sinsub  12442  addsin  12444  subsin  12445  sin2t  12451  demoivreALT  12475  sinppi  19851  sinhalfpip  19854
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-pm 6770  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-ico 10656  df-fz 10777  df-fzo 10865  df-fl 10919  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-sin 12345  df-cos 12346
  Copyright terms: Public domain W3C validator