MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincossq Unicode version

Theorem sincossq 12458
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
Assertion
Ref Expression
sincossq  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )

Proof of Theorem sincossq
StepHypRef Expression
1 negcl 9054 . . 3  |-  ( A  e.  CC  ->  -u A  e.  CC )
2 cosadd 12447 . . 3  |-  ( ( A  e.  CC  /\  -u A  e.  CC )  ->  ( cos `  ( A  +  -u A ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
31, 2mpdan 649 . 2  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  ( ( ( cos `  A )  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
4 negid 9096 . . . 4  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
54fveq2d 5531 . . 3  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  ( cos `  0
) )
6 cos0 12432 . . 3  |-  ( cos `  0 )  =  1
75, 6syl6eq 2333 . 2  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  1 )
8 sincl 12408 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
98sqcld 11245 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
10 coscl 12409 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
1110sqcld 11245 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
129, 11addcomd 9016 . . 3  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) ) )
1310sqvald 11244 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
14 cosneg 12429 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
1514oveq2d 5876 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
)  x.  ( cos `  -u A ) )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
1613, 15eqtr4d 2320 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  -u A ) ) )
178sqvald 11244 . . . . . 6  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
18 sinneg 12428 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  -u A )  = 
-u ( sin `  A
) )
1918negeqd 9048 . . . . . . . 8  |-  ( A  e.  CC  ->  -u ( sin `  -u A )  = 
-u -u ( sin `  A
) )
208negnegd 9150 . . . . . . . 8  |-  ( A  e.  CC  ->  -u -u ( sin `  A )  =  ( sin `  A
) )
2119, 20eqtrd 2317 . . . . . . 7  |-  ( A  e.  CC  ->  -u ( sin `  -u A )  =  ( sin `  A
) )
2221oveq2d 5876 . . . . . 6  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  -u ( sin `  -u A ) )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
2317, 22eqtr4d 2320 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  -u ( sin `  -u A ) ) )
241sincld 12412 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  -u A )  e.  CC )
258, 24mulneg2d 9235 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  -u ( sin `  -u A ) )  =  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )
2623, 25eqtrd 2317 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )
2716, 26oveq12d 5878 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  +  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
281coscld 12413 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  -u A )  e.  CC )
2910, 28mulcld 8857 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
)  x.  ( cos `  -u A ) )  e.  CC )
308, 24mulcld 8857 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  ( sin `  -u A ) )  e.  CC )
3129, 30negsubd 9165 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  x.  ( cos `  -u A ) )  +  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
3212, 27, 313eqtrrd 2322 . 2  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) )  =  ( ( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) ) )
333, 7, 323eqtr3rd 2326 1  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    - cmin 9039   -ucneg 9040   2c2 9797   ^cexp 11106   sincsin 12347   cosccos 12348
This theorem is referenced by:  cos2t  12460  cos2tsin  12461  sinbnd  12462  cosbnd  12463  absefi  12478  sinhalfpilem  19836  sincos6thpi  19885  efif1olem4  19909  asinsin  20190  atandmtan  20218  basellem8  20327  itgsinexp  27760  onetansqsecsq  28242  cotsqcscsq  28243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-ico 10664  df-fz 10785  df-fzo 10873  df-fl 10927  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354
  Copyright terms: Public domain W3C validator