MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincossq Unicode version

Theorem sincossq 12383
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
Assertion
Ref Expression
sincossq  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )

Proof of Theorem sincossq
StepHypRef Expression
1 negcl 8985 . . 3  |-  ( A  e.  CC  ->  -u A  e.  CC )
2 cosadd 12372 . . 3  |-  ( ( A  e.  CC  /\  -u A  e.  CC )  ->  ( cos `  ( A  +  -u A ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
31, 2mpdan 652 . 2  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  ( ( ( cos `  A )  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
4 negid 9027 . . . 4  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
54fveq2d 5427 . . 3  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  ( cos `  0
) )
6 cos0 12357 . . 3  |-  ( cos `  0 )  =  1
75, 6syl6eq 2304 . 2  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  1 )
8 sincl 12333 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
98sqcld 11174 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
10 coscl 12334 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
1110sqcld 11174 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
129, 11addcomd 8947 . . 3  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) ) )
1310sqvald 11173 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
14 cosneg 12354 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
1514oveq2d 5773 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
)  x.  ( cos `  -u A ) )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
1613, 15eqtr4d 2291 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  -u A ) ) )
178sqvald 11173 . . . . . 6  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
18 sinneg 12353 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  -u A )  = 
-u ( sin `  A
) )
1918negeqd 8979 . . . . . . . 8  |-  ( A  e.  CC  ->  -u ( sin `  -u A )  = 
-u -u ( sin `  A
) )
208negnegd 9081 . . . . . . . 8  |-  ( A  e.  CC  ->  -u -u ( sin `  A )  =  ( sin `  A
) )
2119, 20eqtrd 2288 . . . . . . 7  |-  ( A  e.  CC  ->  -u ( sin `  -u A )  =  ( sin `  A
) )
2221oveq2d 5773 . . . . . 6  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  -u ( sin `  -u A ) )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
2317, 22eqtr4d 2291 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  -u ( sin `  -u A ) ) )
241sincld 12337 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  -u A )  e.  CC )
258, 24mulneg2d 9166 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  -u ( sin `  -u A ) )  =  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )
2623, 25eqtrd 2288 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )
2716, 26oveq12d 5775 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  +  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
281coscld 12338 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  -u A )  e.  CC )
2910, 28mulcld 8788 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
)  x.  ( cos `  -u A ) )  e.  CC )
308, 24mulcld 8788 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  ( sin `  -u A ) )  e.  CC )
3129, 30negsubd 9096 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  x.  ( cos `  -u A ) )  +  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
3212, 27, 313eqtrrd 2293 . 2  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) )  =  ( ( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) ) )
333, 7, 323eqtr3rd 2297 1  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   ` cfv 4638  (class class class)co 5757   CCcc 8668   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675    - cmin 8970   -ucneg 8971   2c2 9728   ^cexp 11035   sincsin 12272   cosccos 12273
This theorem is referenced by:  cos2t  12385  cos2tsin  12386  sinbnd  12387  cosbnd  12388  absefi  12403  sinhalfpilem  19761  sincos6thpi  19810  efif1olem4  19834  asinsin  20115  atandmtan  20143  basellem8  20252  onetansqsecsq  27243  cotsqcscsq  27244
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-pm 6708  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-n0 9898  df-z 9957  df-uz 10163  df-rp 10287  df-ico 10593  df-fz 10714  df-fzo 10802  df-fl 10856  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-sum 12089  df-ef 12276  df-sin 12278  df-cos 12279
  Copyright terms: Public domain W3C validator