Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Unicode version

Theorem snmlff 23285
Description: The function  F from snmlval 23287 is a mapping from positive integers to real numbers in the range 
[ 0 ,  1 ]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
Assertion
Ref Expression
snmlff  |-  F : NN
--> ( 0 [,] 1
)
Distinct variable groups:    A, n    B, n    k, n    R, n
Allowed substitution hints:    A( k)    B( k)    R( k)    F( k, n)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
2 fzfid 11002 . . . . . . 7  |-  ( n  e.  NN  ->  (
1 ... n )  e. 
Fin )
3 ssrab2 3233 . . . . . . 7  |-  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
)
4 ssfi 7051 . . . . . . 7  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
) )  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin )
52, 3, 4sylancl 646 . . . . . 6  |-  ( n  e.  NN  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin )
6 hashcl 11317 . . . . . 6  |-  ( { k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin  ->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  NN0 )
75, 6syl 17 . . . . 5  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  e. 
NN0 )
87nn0red 9987 . . . 4  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  e.  RR )
9 nndivre 9749 . . . 4  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  n  e.  NN )  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  RR )
108, 9mpancom 653 . . 3  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  RR )
117nn0ge0d 9989 . . . 4  |-  ( n  e.  NN  ->  0  <_  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } ) )
12 nnre 9721 . . . 4  |-  ( n  e.  NN  ->  n  e.  RR )
13 nngt0 9743 . . . 4  |-  ( n  e.  NN  ->  0  <  n )
14 divge0 9593 . . . 4  |-  ( ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  0  <_  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } ) )  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
0  <_  ( ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n ) )
158, 11, 12, 13, 14syl22anc 1188 . . 3  |-  ( n  e.  NN  ->  0  <_  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
16 ssdomg 6875 . . . . . . . 8  |-  ( ( 1 ... n )  e.  Fin  ->  ( { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
)  ->  { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B }  ~<_  ( 1 ... n ) ) )
172, 3, 16ee10 1372 . . . . . . 7  |-  ( n  e.  NN  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n ) )
18 hashdom 11328 . . . . . . . 8  |-  ( ( { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin  /\  ( 1 ... n )  e. 
Fin )  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( # `  (
1 ... n ) )  <->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n
) ) )
195, 2, 18syl2anc 645 . . . . . . 7  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( # `  (
1 ... n ) )  <->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n
) ) )
2017, 19mpbird 225 . . . . . 6  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_ 
( # `  ( 1 ... n ) ) )
21 nnnn0 9940 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  NN0 )
22 hashfz1 11312 . . . . . . 7  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
2321, 22syl 17 . . . . . 6  |-  ( n  e.  NN  ->  ( # `
 ( 1 ... n ) )  =  n )
2420, 23breqtrd 4021 . . . . 5  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_  n )
25 nncn 9722 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
2625mulid1d 8820 . . . . 5  |-  ( n  e.  NN  ->  (
n  x.  1 )  =  n )
2724, 26breqtrrd 4023 . . . 4  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_ 
( n  x.  1 ) )
28 1re 8805 . . . . . 6  |-  1  e.  RR
2928a1i 12 . . . . 5  |-  ( n  e.  NN  ->  1  e.  RR )
30 ledivmul 9597 . . . . 5  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  1  e.  RR  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
( ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }
)  /  n )  <_  1  <->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( n  x.  1 ) ) )
318, 29, 12, 13, 30syl112anc 1191 . . . 4  |-  ( n  e.  NN  ->  (
( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1  <->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( n  x.  1 ) ) )
3227, 31mpbird 225 . . 3  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1 )
33 0re 8806 . . . 4  |-  0  e.  RR
3433, 28elicc2i 10683 . . 3  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  ( 0 [,] 1
)  <->  ( ( (
# `  { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n )  e.  RR  /\  0  <_  ( ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n )  /\  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1 ) )
3510, 15, 32, 34syl3anbrc 1141 . 2  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  ( 0 [,] 1
) )
361, 35fmpti 5617 1  |-  F : NN
--> ( 0 [,] 1
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    = wceq 1619    e. wcel 1621   {crab 2522    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   -->wf 4669   ` cfv 4673  (class class class)co 5792    ~<_ cdom 6829   Fincfn 6831   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   NN0cn0 9933   [,]cicc 10626   ...cfz 10749   |_cfl 10891    mod cmo 10940   ^cexp 11071   #chash 11304
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-card 7540  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-n0 9934  df-z 9993  df-uz 10199  df-icc 10630  df-fz 10750  df-hash 11305
  Copyright terms: Public domain W3C validator