Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Unicode version

Theorem snmlff 23319
Description: The function  F from snmlval 23321 is a mapping from positive integers to real numbers in the range 
[ 0 ,  1 ]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
Assertion
Ref Expression
snmlff  |-  F : NN
--> ( 0 [,] 1
)
Distinct variable groups:    A, n    B, n    k, n    R, n
Allowed substitution hints:    A( k)    B( k)    R( k)    F( k, n)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2  |-  F  =  ( n  e.  NN  |->  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
2 fzfid 11031 . . . . . . 7  |-  ( n  e.  NN  ->  (
1 ... n )  e. 
Fin )
3 ssrab2 3259 . . . . . . 7  |-  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
)
4 ssfi 7079 . . . . . . 7  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
) )  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin )
52, 3, 4sylancl 643 . . . . . 6  |-  ( n  e.  NN  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin )
6 hashcl 11346 . . . . . 6  |-  ( { k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin  ->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  NN0 )
75, 6syl 15 . . . . 5  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  e. 
NN0 )
87nn0red 10015 . . . 4  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  e.  RR )
9 nndivre 9777 . . . 4  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  n  e.  NN )  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  RR )
108, 9mpancom 650 . . 3  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  RR )
117nn0ge0d 10017 . . . 4  |-  ( n  e.  NN  ->  0  <_  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } ) )
12 nnre 9749 . . . 4  |-  ( n  e.  NN  ->  n  e.  RR )
13 nngt0 9771 . . . 4  |-  ( n  e.  NN  ->  0  <  n )
14 divge0 9621 . . . 4  |-  ( ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  0  <_  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } ) )  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
0  <_  ( ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n ) )
158, 11, 12, 13, 14syl22anc 1183 . . 3  |-  ( n  e.  NN  ->  0  <_  ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n ) )
16 ssdomg 6903 . . . . . . . 8  |-  ( ( 1 ... n )  e.  Fin  ->  ( { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  C_  ( 1 ... n
)  ->  { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B }  ~<_  ( 1 ... n ) ) )
172, 3, 16ee10 1366 . . . . . . 7  |-  ( n  e.  NN  ->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n ) )
18 hashdom 11357 . . . . . . . 8  |-  ( ( { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  e.  Fin  /\  ( 1 ... n )  e. 
Fin )  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( # `  (
1 ... n ) )  <->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n
) ) )
195, 2, 18syl2anc 642 . . . . . . 7  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( # `  (
1 ... n ) )  <->  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }  ~<_  ( 1 ... n
) ) )
2017, 19mpbird 223 . . . . . 6  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_ 
( # `  ( 1 ... n ) ) )
21 nnnn0 9968 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  NN0 )
22 hashfz1 11341 . . . . . . 7  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
2321, 22syl 15 . . . . . 6  |-  ( n  e.  NN  ->  ( # `
 ( 1 ... n ) )  =  n )
2420, 23breqtrd 4048 . . . . 5  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_  n )
25 nncn 9750 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
2625mulid1d 8848 . . . . 5  |-  ( n  e.  NN  ->  (
n  x.  1 )  =  n )
2724, 26breqtrrd 4050 . . . 4  |-  ( n  e.  NN  ->  ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  <_ 
( n  x.  1 ) )
28 1re 8833 . . . . . 6  |-  1  e.  RR
2928a1i 10 . . . . 5  |-  ( n  e.  NN  ->  1  e.  RR )
30 ledivmul 9625 . . . . 5  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  e.  RR  /\  1  e.  RR  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
( ( ( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B }
)  /  n )  <_  1  <->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( n  x.  1 ) ) )
318, 29, 12, 13, 30syl112anc 1186 . . . 4  |-  ( n  e.  NN  ->  (
( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1  <->  ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  <_  ( n  x.  1 ) ) )
3227, 31mpbird 223 . . 3  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1 )
33 0re 8834 . . . 4  |-  0  e.  RR
3433, 28elicc2i 10712 . . 3  |-  ( ( ( # `  {
k  e.  ( 1 ... n )  |  ( |_ `  (
( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  ( 0 [,] 1
)  <->  ( ( (
# `  { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n )  e.  RR  /\  0  <_  ( ( # `
 { k  e.  ( 1 ... n
)  |  ( |_
`  ( ( A  x.  ( R ^
k ) )  mod 
R ) )  =  B } )  /  n )  /\  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  <_ 
1 ) )
3510, 15, 32, 34syl3anbrc 1136 . 2  |-  ( n  e.  NN  ->  (
( # `  { k  e.  ( 1 ... n )  |  ( |_ `  ( ( A  x.  ( R ^ k ) )  mod  R ) )  =  B } )  /  n )  e.  ( 0 [,] 1
) )
361, 35fmpti 5645 1  |-  F : NN
--> ( 0 [,] 1
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1685   {crab 2548    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   -->wf 5217   ` cfv 5221  (class class class)co 5820    ~<_ cdom 6857   Fincfn 6859   RRcr 8732   0cc0 8733   1c1 8734    x. cmul 8738    < clt 8863    <_ cle 8864    / cdiv 9419   NNcn 9742   NN0cn0 9961   [,]cicc 10655   ...cfz 10778   |_cfl 10920    mod cmo 10969   ^cexp 11100   #chash 11333
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-n0 9962  df-z 10021  df-uz 10227  df-icc 10659  df-fz 10779  df-hash 11334
  Copyright terms: Public domain W3C validator