HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansn0 Structured version   Unicode version

Theorem spansn0 23074
Description: The span of the singleton of the zero vector is the zero subspace. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Assertion
Ref Expression
spansn0  |-  ( span `  { 0h } )  =  0H

Proof of Theorem spansn0
StepHypRef Expression
1 df-ch0 22786 . . 3  |-  0H  =  { 0h }
21fveq2i 5760 . 2  |-  ( span `  0H )  =  (
span `  { 0h }
)
3 h0elsh 22789 . . 3  |-  0H  e.  SH
4 spanid 22880 . . 3  |-  ( 0H  e.  SH  ->  ( span `  0H )  =  0H )
53, 4ax-mp 5 . 2  |-  ( span `  0H )  =  0H
62, 5eqtr3i 2464 1  |-  ( span `  { 0h } )  =  0H
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1727   {csn 3838   ` cfv 5483   0hc0v 22458   SHcsh 22462   spancspn 22466   0Hc0h 22469
This theorem is referenced by:  sumdmdlem2  23953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101  ax-hilex 22533  ax-hfvadd 22534  ax-hvcom 22535  ax-hvass 22536  ax-hv0cl 22537  ax-hvaddid 22538  ax-hfvmul 22539  ax-hvmulid 22540  ax-hvmulass 22541  ax-hvdistr1 22542  ax-hvdistr2 22543  ax-hvmul0 22544  ax-hfi 22612  ax-his1 22615  ax-his2 22616  ax-his3 22617  ax-his4 22618
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-map 7049  df-pm 7050  df-en 7139  df-dom 7140  df-sdom 7141  df-sup 7475  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-n0 10253  df-z 10314  df-uz 10520  df-q 10606  df-rp 10644  df-xneg 10741  df-xadd 10742  df-xmul 10743  df-icc 10954  df-seq 11355  df-exp 11414  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-topgen 13698  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728  df-mopn 16729  df-top 16994  df-bases 16996  df-topon 16997  df-lm 17324  df-haus 17410  df-grpo 21810  df-gid 21811  df-ginv 21812  df-gdiv 21813  df-ablo 21901  df-vc 22056  df-nv 22102  df-va 22105  df-ba 22106  df-sm 22107  df-0v 22108  df-vs 22109  df-nmcv 22110  df-ims 22111  df-hnorm 22502  df-hvsub 22505  df-hlim 22506  df-sh 22740  df-ch 22755  df-ch0 22786  df-span 22842
  Copyright terms: Public domain W3C validator