HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncvi Unicode version

Theorem spansncvi 22174
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spansncv.1  |-  A  e. 
CH
spansncv.2  |-  B  e. 
CH
spansncv.3  |-  C  e. 
~H
Assertion
Ref Expression
spansncvi  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  B  =  ( A  vH  ( span `  { C } ) ) )

Proof of Theorem spansncvi
StepHypRef Expression
1 simpr 449 . 2  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  B  C_  ( A  vH  ( span `  { C } ) ) )
2 pssss 3213 . . . 4  |-  ( A 
C.  B  ->  A  C_  B )
32adantr 453 . . 3  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  A  C_  B
)
4 pssnel 3461 . . . . . . 7  |-  ( A 
C.  B  ->  E. x
( x  e.  B  /\  -.  x  e.  A
) )
5 ssel2 3117 . . . . . . . . . . . 12  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  x  e.  B )  ->  x  e.  ( A  vH  ( span `  { C } ) ) )
6 spansncv.1 . . . . . . . . . . . . . . . 16  |-  A  e. 
CH
7 spansncv.3 . . . . . . . . . . . . . . . 16  |-  C  e. 
~H
86, 7spansnji 22168 . . . . . . . . . . . . . . 15  |-  ( A  +H  ( span `  { C } ) )  =  ( A  vH  ( span `  { C }
) )
98eleq2i 2320 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  +H  ( span `  { C } ) )  <->  x  e.  ( A  vH  ( span `  { C }
) ) )
107spansnchi 22066 . . . . . . . . . . . . . . 15  |-  ( span `  { C } )  e.  CH
116, 10chseli 21963 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  +H  ( span `  { C } ) )  <->  E. y  e.  A  E. z  e.  ( span `  { C } ) x  =  ( y  +h  z
) )
129, 11bitr3i 244 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  vH  ( span `  { C } ) )  <->  E. y  e.  A  E. z  e.  ( span `  { C } ) x  =  ( y  +h  z
) )
13 eleq1 2316 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  ( y  +h  z )  ->  (
x  e.  B  <->  ( y  +h  z )  e.  B
) )
1413biimpac 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  B  /\  x  =  ( y  +h  z ) )  -> 
( y  +h  z
)  e.  B )
152sselda 3122 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  C.  B  /\  y  e.  A )  ->  y  e.  B )
16 spansncv.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  B  e. 
CH
1716chshii 21732 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  B  e.  SH
18 shsubcl 21725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  e.  SH  /\  ( y  +h  z
)  e.  B  /\  y  e.  B )  ->  ( ( y  +h  z )  -h  y
)  e.  B )
1917, 18mp3an1 1269 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  +h  z
)  e.  B  /\  y  e.  B )  ->  ( ( y  +h  z )  -h  y
)  e.  B )
2014, 15, 19syl2an 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  e.  B  /\  x  =  (
y  +h  z ) )  /\  ( A 
C.  B  /\  y  e.  A ) )  -> 
( ( y  +h  z )  -h  y
)  e.  B )
2120exp43 598 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  B  ->  (
x  =  ( y  +h  z )  -> 
( A  C.  B  ->  ( y  e.  A  ->  ( ( y  +h  z )  -h  y
)  e.  B ) ) ) )
2221com14 84 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  A  ->  (
x  =  ( y  +h  z )  -> 
( A  C.  B  ->  ( x  e.  B  ->  ( ( y  +h  z )  -h  y
)  e.  B ) ) ) )
2322imp45 583 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  A  /\  ( x  =  (
y  +h  z )  /\  ( A  C.  B  /\  x  e.  B
) ) )  -> 
( ( y  +h  z )  -h  y
)  e.  B )
246cheli 21737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  A  ->  y  e.  ~H )
2510cheli 21737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  ( span `  { C } )  ->  z  e.  ~H )
26 hvpncan2 21544 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  -h  y
)  =  z )
2724, 25, 26syl2an 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( (
y  +h  z )  -h  y )  =  z )
2827eleq1d 2322 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( (
( y  +h  z
)  -h  y )  e.  B  <->  z  e.  B ) )
2923, 28syl5ib 212 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( (
y  e.  A  /\  ( x  =  (
y  +h  z )  /\  ( A  C.  B  /\  x  e.  B
) ) )  -> 
z  e.  B ) )
3029imp 420 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  A  /\  z  e.  ( span `  { C }
) )  /\  (
y  e.  A  /\  ( x  =  (
y  +h  z )  /\  ( A  C.  B  /\  x  e.  B
) ) ) )  ->  z  e.  B
)
3130anandis 806 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  ( z  e.  (
span `  { C } )  /\  (
x  =  ( y  +h  z )  /\  ( A  C.  B  /\  x  e.  B )
) ) )  -> 
z  e.  B )
3231exp45 600 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  (
z  e.  ( span `  { C } )  ->  ( x  =  ( y  +h  z
)  ->  ( ( A  C.  B  /\  x  e.  B )  ->  z  e.  B ) ) ) )
3332imp41 579 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( A  C.  B  /\  x  e.  B )
)  ->  z  e.  B )
3433adantrr 700 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( ( A  C.  B  /\  x  e.  B
)  /\  -.  x  e.  A ) )  -> 
z  e.  B )
35 oveq2 5765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  0h  ->  (
y  +h  z )  =  ( y  +h 
0h ) )
36 ax-hvaddid 21509 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ~H  ->  (
y  +h  0h )  =  y )
3724, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  A  ->  (
y  +h  0h )  =  y )
3835, 37sylan9eqr 2310 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( y  +h  z
)  =  y )
3938eqeq2d 2267 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( x  =  ( y  +h  z )  <-> 
x  =  y ) )
40 eleq1a 2325 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  A  ->  (
x  =  y  ->  x  e.  A )
)
4140adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( x  =  y  ->  x  e.  A
) )
4239, 41sylbid 208 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( x  =  ( y  +h  z )  ->  x  e.  A
) )
4342impancom 429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  A  /\  x  =  ( y  +h  z ) )  -> 
( z  =  0h  ->  x  e.  A ) )
4443necon3bd 2456 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  A  /\  x  =  ( y  +h  z ) )  -> 
( -.  x  e.  A  ->  z  =/=  0h ) )
4544imp 420 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  A  /\  x  =  (
y  +h  z ) )  /\  -.  x  e.  A )  ->  z  =/=  0h )
46 spansnss 22075 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  ( span `  {
z } )  C_  B )
4717, 46mpan 654 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  B  ->  ( span `  { z } )  C_  B )
48 spansneleq 22074 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( C  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { C } )  ->  ( span `  { z } )  =  ( span `  { C } ) ) )
497, 48mpan 654 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =/=  0h  ->  (
z  e.  ( span `  { C } )  ->  ( span `  {
z } )  =  ( span `  { C } ) ) )
5049imp 420 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  =/=  0h  /\  z  e.  ( span `  { C } ) )  ->  ( span `  { z } )  =  ( span `  { C } ) )
5150sseq1d 3147 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  =/=  0h  /\  z  e.  ( span `  { C } ) )  ->  ( ( span `  { z } )  C_  B  <->  ( span `  { C } ) 
C_  B ) )
5247, 51syl5ib 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  =/=  0h  /\  z  e.  ( span `  { C } ) )  ->  ( z  e.  B  ->  ( span `  { C } ) 
C_  B ) )
5352ancoms 441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ( span `  { C } )  /\  z  =/=  0h )  ->  ( z  e.  B  ->  ( span `  { C } ) 
C_  B ) )
5445, 53sylan2 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ( span `  { C } )  /\  ( ( y  e.  A  /\  x  =  ( y  +h  z ) )  /\  -.  x  e.  A
) )  ->  (
z  e.  B  -> 
( span `  { C } )  C_  B
) )
5554exp44 599 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( span `  { C } )  ->  (
y  e.  A  -> 
( x  =  ( y  +h  z )  ->  ( -.  x  e.  A  ->  ( z  e.  B  ->  ( span `  { C }
)  C_  B )
) ) ) )
5655com12 29 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  (
z  e.  ( span `  { C } )  ->  ( x  =  ( y  +h  z
)  ->  ( -.  x  e.  A  ->  ( z  e.  B  -> 
( span `  { C } )  C_  B
) ) ) ) )
5756imp41 579 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  -.  x  e.  A
)  ->  ( z  e.  B  ->  ( span `  { C } ) 
C_  B ) )
5857adantrl 699 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( ( A  C.  B  /\  x  e.  B
)  /\  -.  x  e.  A ) )  -> 
( z  e.  B  ->  ( span `  { C } )  C_  B
) )
5934, 58mpd 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( ( A  C.  B  /\  x  e.  B
)  /\  -.  x  e.  A ) )  -> 
( span `  { C } )  C_  B
)
6059exp43 598 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( x  =  ( y  +h  z )  ->  (
( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) ) )
6160rexlimivv 2643 . . . . . . . . . . . . 13  |-  ( E. y  e.  A  E. z  e.  ( span `  { C } ) x  =  ( y  +h  z )  -> 
( ( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) )
6212, 61sylbi 189 . . . . . . . . . . . 12  |-  ( x  e.  ( A  vH  ( span `  { C } ) )  -> 
( ( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) )
635, 62syl 17 . . . . . . . . . . 11  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  x  e.  B )  ->  ( ( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) )
6463imp 420 . . . . . . . . . 10  |-  ( ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  x  e.  B )  /\  ( A  C.  B  /\  x  e.  B
) )  ->  ( -.  x  e.  A  ->  ( span `  { C } )  C_  B
) )
6564anandirs 807 . . . . . . . . 9  |-  ( ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  /\  x  e.  B )  ->  ( -.  x  e.  A  ->  ( span `  { C } ) 
C_  B ) )
6665expimpd 589 . . . . . . . 8  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  -> 
( ( x  e.  B  /\  -.  x  e.  A )  ->  ( span `  { C }
)  C_  B )
)
6766exlimdv 1933 . . . . . . 7  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  -> 
( E. x ( x  e.  B  /\  -.  x  e.  A
)  ->  ( span `  { C } ) 
C_  B ) )
684, 67syl5 30 . . . . . 6  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  -> 
( A  C.  B  ->  ( span `  { C } )  C_  B
) )
6968ex 425 . . . . 5  |-  ( B 
C_  ( A  vH  ( span `  { C } ) )  -> 
( A  C.  B  ->  ( A  C.  B  ->  ( span `  { C } )  C_  B
) ) )
7069pm2.43d 46 . . . 4  |-  ( B 
C_  ( A  vH  ( span `  { C } ) )  -> 
( A  C.  B  ->  ( span `  { C } )  C_  B
) )
7170impcom 421 . . 3  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  ( span `  { C } )  C_  B
)
726, 10, 16chlubii 21976 . . 3  |-  ( ( A  C_  B  /\  ( span `  { C } )  C_  B
)  ->  ( A  vH  ( span `  { C } ) )  C_  B )
733, 71, 72syl2anc 645 . 2  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  ( A  vH  ( span `  { C } ) )  C_  B )
741, 73eqssd 3138 1  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  B  =  ( A  vH  ( span `  { C } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517    C_ wss 3094    C. wpss 3095   {csn 3581   ` cfv 4638  (class class class)co 5757   ~Hchil 21424    +h cva 21425   0hc0v 21429    -h cmv 21430   SHcsh 21433   CHcch 21434    +H cph 21436   spancspn 21437    vH chj 21438
This theorem is referenced by:  spansncv  22175
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cc 7994  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750  ax-hilex 21504  ax-hfvadd 21505  ax-hvcom 21506  ax-hvass 21507  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvmulass 21512  ax-hvdistr1 21513  ax-hvdistr2 21514  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589  ax-hcompl 21706
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-acn 7508  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-rlim 11893  df-sum 12089  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-cn 16884  df-cnp 16885  df-lm 16886  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cfil 18608  df-cau 18609  df-cmet 18610  df-grpo 20783  df-gid 20784  df-ginv 20785  df-gdiv 20786  df-ablo 20874  df-subgo 20894  df-vc 21027  df-nv 21073  df-va 21076  df-ba 21077  df-sm 21078  df-0v 21079  df-vs 21080  df-nmcv 21081  df-ims 21082  df-dip 21199  df-ssp 21223  df-ph 21316  df-cbn 21367  df-hnorm 21473  df-hba 21474  df-hvsub 21476  df-hlim 21477  df-hcau 21478  df-sh 21711  df-ch 21726  df-oc 21756  df-ch0 21757  df-shs 21812  df-span 21813  df-chj 21814  df-pjh 21899
  Copyright terms: Public domain W3C validator