HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncvi Structured version   Unicode version

Theorem spansncvi 23154
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spansncv.1  |-  A  e. 
CH
spansncv.2  |-  B  e. 
CH
spansncv.3  |-  C  e. 
~H
Assertion
Ref Expression
spansncvi  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  B  =  ( A  vH  ( span `  { C } ) ) )

Proof of Theorem spansncvi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . 2  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  B  C_  ( A  vH  ( span `  { C } ) ) )
2 pssss 3442 . . . 4  |-  ( A 
C.  B  ->  A  C_  B )
32adantr 452 . . 3  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  A  C_  B
)
4 pssnel 3693 . . . . . . 7  |-  ( A 
C.  B  ->  E. x
( x  e.  B  /\  -.  x  e.  A
) )
5 ssel2 3343 . . . . . . . . . . . 12  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  x  e.  B )  ->  x  e.  ( A  vH  ( span `  { C } ) ) )
6 spansncv.1 . . . . . . . . . . . . . . . 16  |-  A  e. 
CH
7 spansncv.3 . . . . . . . . . . . . . . . 16  |-  C  e. 
~H
86, 7spansnji 23148 . . . . . . . . . . . . . . 15  |-  ( A  +H  ( span `  { C } ) )  =  ( A  vH  ( span `  { C }
) )
98eleq2i 2500 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  +H  ( span `  { C } ) )  <->  x  e.  ( A  vH  ( span `  { C }
) ) )
107spansnchi 23064 . . . . . . . . . . . . . . 15  |-  ( span `  { C } )  e.  CH
116, 10chseli 22961 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  +H  ( span `  { C } ) )  <->  E. y  e.  A  E. z  e.  ( span `  { C } ) x  =  ( y  +h  z
) )
129, 11bitr3i 243 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  vH  ( span `  { C } ) )  <->  E. y  e.  A  E. z  e.  ( span `  { C } ) x  =  ( y  +h  z
) )
13 eleq1 2496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  ( y  +h  z )  ->  (
x  e.  B  <->  ( y  +h  z )  e.  B
) )
1413biimpac 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  B  /\  x  =  ( y  +h  z ) )  -> 
( y  +h  z
)  e.  B )
152sselda 3348 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  C.  B  /\  y  e.  A )  ->  y  e.  B )
16 spansncv.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  B  e. 
CH
1716chshii 22730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  B  e.  SH
18 shsubcl 22723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  e.  SH  /\  ( y  +h  z
)  e.  B  /\  y  e.  B )  ->  ( ( y  +h  z )  -h  y
)  e.  B )
1917, 18mp3an1 1266 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  +h  z
)  e.  B  /\  y  e.  B )  ->  ( ( y  +h  z )  -h  y
)  e.  B )
2014, 15, 19syl2an 464 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  e.  B  /\  x  =  (
y  +h  z ) )  /\  ( A 
C.  B  /\  y  e.  A ) )  -> 
( ( y  +h  z )  -h  y
)  e.  B )
2120exp43 596 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  B  ->  (
x  =  ( y  +h  z )  -> 
( A  C.  B  ->  ( y  e.  A  ->  ( ( y  +h  z )  -h  y
)  e.  B ) ) ) )
2221com14 84 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  A  ->  (
x  =  ( y  +h  z )  -> 
( A  C.  B  ->  ( x  e.  B  ->  ( ( y  +h  z )  -h  y
)  e.  B ) ) ) )
2322imp45 581 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  A  /\  ( x  =  (
y  +h  z )  /\  ( A  C.  B  /\  x  e.  B
) ) )  -> 
( ( y  +h  z )  -h  y
)  e.  B )
246cheli 22735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  A  ->  y  e.  ~H )
2510cheli 22735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  ( span `  { C } )  ->  z  e.  ~H )
26 hvpncan2 22542 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  -h  y
)  =  z )
2724, 25, 26syl2an 464 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( (
y  +h  z )  -h  y )  =  z )
2827eleq1d 2502 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( (
( y  +h  z
)  -h  y )  e.  B  <->  z  e.  B ) )
2923, 28syl5ib 211 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( (
y  e.  A  /\  ( x  =  (
y  +h  z )  /\  ( A  C.  B  /\  x  e.  B
) ) )  -> 
z  e.  B ) )
3029imp 419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  A  /\  z  e.  ( span `  { C }
) )  /\  (
y  e.  A  /\  ( x  =  (
y  +h  z )  /\  ( A  C.  B  /\  x  e.  B
) ) ) )  ->  z  e.  B
)
3130anandis 804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  ( z  e.  (
span `  { C } )  /\  (
x  =  ( y  +h  z )  /\  ( A  C.  B  /\  x  e.  B )
) ) )  -> 
z  e.  B )
3231exp45 598 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  (
z  e.  ( span `  { C } )  ->  ( x  =  ( y  +h  z
)  ->  ( ( A  C.  B  /\  x  e.  B )  ->  z  e.  B ) ) ) )
3332imp41 577 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( A  C.  B  /\  x  e.  B )
)  ->  z  e.  B )
3433adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( ( A  C.  B  /\  x  e.  B
)  /\  -.  x  e.  A ) )  -> 
z  e.  B )
35 oveq2 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  0h  ->  (
y  +h  z )  =  ( y  +h 
0h ) )
36 ax-hvaddid 22507 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ~H  ->  (
y  +h  0h )  =  y )
3724, 36syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  A  ->  (
y  +h  0h )  =  y )
3835, 37sylan9eqr 2490 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( y  +h  z
)  =  y )
3938eqeq2d 2447 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( x  =  ( y  +h  z )  <-> 
x  =  y ) )
40 eleq1a 2505 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  A  ->  (
x  =  y  ->  x  e.  A )
)
4140adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( x  =  y  ->  x  e.  A
) )
4239, 41sylbid 207 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  A  /\  z  =  0h )  ->  ( x  =  ( y  +h  z )  ->  x  e.  A
) )
4342impancom 428 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  A  /\  x  =  ( y  +h  z ) )  -> 
( z  =  0h  ->  x  e.  A ) )
4443necon3bd 2638 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  A  /\  x  =  ( y  +h  z ) )  -> 
( -.  x  e.  A  ->  z  =/=  0h ) )
4544imp 419 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  A  /\  x  =  (
y  +h  z ) )  /\  -.  x  e.  A )  ->  z  =/=  0h )
46 spansnss 23073 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  SH  /\  z  e.  B )  ->  ( span `  {
z } )  C_  B )
4717, 46mpan 652 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  B  ->  ( span `  { z } )  C_  B )
48 spansneleq 23072 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( C  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { C } )  ->  ( span `  { z } )  =  ( span `  { C } ) ) )
497, 48mpan 652 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =/=  0h  ->  (
z  e.  ( span `  { C } )  ->  ( span `  {
z } )  =  ( span `  { C } ) ) )
5049imp 419 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  =/=  0h  /\  z  e.  ( span `  { C } ) )  ->  ( span `  { z } )  =  ( span `  { C } ) )
5150sseq1d 3375 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  =/=  0h  /\  z  e.  ( span `  { C } ) )  ->  ( ( span `  { z } )  C_  B  <->  ( span `  { C } ) 
C_  B ) )
5247, 51syl5ib 211 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  =/=  0h  /\  z  e.  ( span `  { C } ) )  ->  ( z  e.  B  ->  ( span `  { C } ) 
C_  B ) )
5352ancoms 440 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ( span `  { C } )  /\  z  =/=  0h )  ->  ( z  e.  B  ->  ( span `  { C } ) 
C_  B ) )
5445, 53sylan2 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ( span `  { C } )  /\  ( ( y  e.  A  /\  x  =  ( y  +h  z ) )  /\  -.  x  e.  A
) )  ->  (
z  e.  B  -> 
( span `  { C } )  C_  B
) )
5554exp44 597 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( span `  { C } )  ->  (
y  e.  A  -> 
( x  =  ( y  +h  z )  ->  ( -.  x  e.  A  ->  ( z  e.  B  ->  ( span `  { C }
)  C_  B )
) ) ) )
5655com12 29 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  (
z  e.  ( span `  { C } )  ->  ( x  =  ( y  +h  z
)  ->  ( -.  x  e.  A  ->  ( z  e.  B  -> 
( span `  { C } )  C_  B
) ) ) ) )
5756imp41 577 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  -.  x  e.  A
)  ->  ( z  e.  B  ->  ( span `  { C } ) 
C_  B ) )
5857adantrl 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( ( A  C.  B  /\  x  e.  B
)  /\  -.  x  e.  A ) )  -> 
( z  e.  B  ->  ( span `  { C } )  C_  B
) )
5934, 58mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  /\  x  =  ( y  +h  z ) )  /\  ( ( A  C.  B  /\  x  e.  B
)  /\  -.  x  e.  A ) )  -> 
( span `  { C } )  C_  B
)
6059exp43 596 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  z  e.  ( span `  { C } ) )  ->  ( x  =  ( y  +h  z )  ->  (
( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) ) )
6160rexlimivv 2835 . . . . . . . . . . . . 13  |-  ( E. y  e.  A  E. z  e.  ( span `  { C } ) x  =  ( y  +h  z )  -> 
( ( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) )
6212, 61sylbi 188 . . . . . . . . . . . 12  |-  ( x  e.  ( A  vH  ( span `  { C } ) )  -> 
( ( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) )
635, 62syl 16 . . . . . . . . . . 11  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  x  e.  B )  ->  ( ( A  C.  B  /\  x  e.  B
)  ->  ( -.  x  e.  A  ->  (
span `  { C } )  C_  B
) ) )
6463imp 419 . . . . . . . . . 10  |-  ( ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  x  e.  B )  /\  ( A  C.  B  /\  x  e.  B
) )  ->  ( -.  x  e.  A  ->  ( span `  { C } )  C_  B
) )
6564anandirs 805 . . . . . . . . 9  |-  ( ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  /\  x  e.  B )  ->  ( -.  x  e.  A  ->  ( span `  { C } ) 
C_  B ) )
6665expimpd 587 . . . . . . . 8  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  -> 
( ( x  e.  B  /\  -.  x  e.  A )  ->  ( span `  { C }
)  C_  B )
)
6766exlimdv 1646 . . . . . . 7  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  -> 
( E. x ( x  e.  B  /\  -.  x  e.  A
)  ->  ( span `  { C } ) 
C_  B ) )
684, 67syl5 30 . . . . . 6  |-  ( ( B  C_  ( A  vH  ( span `  { C } ) )  /\  A  C.  B )  -> 
( A  C.  B  ->  ( span `  { C } )  C_  B
) )
6968ex 424 . . . . 5  |-  ( B 
C_  ( A  vH  ( span `  { C } ) )  -> 
( A  C.  B  ->  ( A  C.  B  ->  ( span `  { C } )  C_  B
) ) )
7069pm2.43d 46 . . . 4  |-  ( B 
C_  ( A  vH  ( span `  { C } ) )  -> 
( A  C.  B  ->  ( span `  { C } )  C_  B
) )
7170impcom 420 . . 3  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  ( span `  { C } )  C_  B
)
726, 10, 16chlubii 22974 . . 3  |-  ( ( A  C_  B  /\  ( span `  { C } )  C_  B
)  ->  ( A  vH  ( span `  { C } ) )  C_  B )
733, 71, 72syl2anc 643 . 2  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  ( A  vH  ( span `  { C } ) )  C_  B )
741, 73eqssd 3365 1  |-  ( ( A  C.  B  /\  B  C_  ( A  vH  ( span `  { C } ) ) )  ->  B  =  ( A  vH  ( span `  { C } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706    C_ wss 3320    C. wpss 3321   {csn 3814   ` cfv 5454  (class class class)co 6081   ~Hchil 22422    +h cva 22423   0hc0v 22427    -h cmv 22428   SHcsh 22431   CHcch 22432    +H cph 22434   spancspn 22435    vH chj 22436
This theorem is referenced by:  spansncv  23155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cc 8315  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070  ax-hilex 22502  ax-hfvadd 22503  ax-hvcom 22504  ax-hvass 22505  ax-hv0cl 22506  ax-hvaddid 22507  ax-hfvmul 22508  ax-hvmulid 22509  ax-hvmulass 22510  ax-hvdistr1 22511  ax-hvdistr2 22512  ax-hvmul0 22513  ax-hfi 22581  ax-his1 22584  ax-his2 22585  ax-his3 22586  ax-his4 22587  ax-hcompl 22704
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-rlim 12283  df-sum 12480  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-cn 17291  df-cnp 17292  df-lm 17293  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cfil 19208  df-cau 19209  df-cmet 19210  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782  df-ablo 21870  df-subgo 21890  df-vc 22025  df-nv 22071  df-va 22074  df-ba 22075  df-sm 22076  df-0v 22077  df-vs 22078  df-nmcv 22079  df-ims 22080  df-dip 22197  df-ssp 22221  df-ph 22314  df-cbn 22365  df-hnorm 22471  df-hba 22472  df-hvsub 22474  df-hlim 22475  df-hcau 22476  df-sh 22709  df-ch 22724  df-oc 22754  df-ch0 22755  df-shs 22810  df-span 22811  df-chj 22812  df-pjh 22897
  Copyright terms: Public domain W3C validator