HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanval Unicode version

Theorem spanval 21858
Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
spanval  |-  ( A 
C_  ~H  ->  ( span `  A )  =  |^| { x  e.  SH  |  A  C_  x } )
Distinct variable group:    x, A

Proof of Theorem spanval
StepHypRef Expression
1 ax-hilex 21525 . . . 4  |-  ~H  e.  _V
21elpw2 4128 . . 3  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
32biimpri 199 . 2  |-  ( A 
C_  ~H  ->  A  e. 
~P ~H )
4 helsh 21770 . . . 4  |-  ~H  e.  SH
5 sseq2 3161 . . . . 5  |-  ( x  =  ~H  ->  ( A  C_  x  <->  A  C_  ~H ) )
65rcla4ev 2852 . . . 4  |-  ( ( ~H  e.  SH  /\  A  C_  ~H )  ->  E. x  e.  SH  A  C_  x )
74, 6mpan 654 . . 3  |-  ( A 
C_  ~H  ->  E. x  e.  SH  A  C_  x
)
8 intexrab 4132 . . 3  |-  ( E. x  e.  SH  A  C_  x  <->  |^| { x  e.  SH  |  A  C_  x }  e.  _V )
97, 8sylib 190 . 2  |-  ( A 
C_  ~H  ->  |^| { x  e.  SH  |  A  C_  x }  e.  _V )
10 sseq1 3160 . . . . 5  |-  ( y  =  A  ->  (
y  C_  x  <->  A  C_  x
) )
1110rabbidv 2749 . . . 4  |-  ( y  =  A  ->  { x  e.  SH  |  y  C_  x }  =  {
x  e.  SH  |  A  C_  x } )
1211inteqd 3827 . . 3  |-  ( y  =  A  ->  |^| { x  e.  SH  |  y  C_  x }  =  |^| { x  e.  SH  |  A  C_  x } )
13 df-span 21834 . . 3  |-  span  =  ( y  e.  ~P ~H  |->  |^| { x  e.  SH  |  y  C_  x } )
1412, 13fvmptg 5520 . 2  |-  ( ( A  e.  ~P ~H  /\ 
|^| { x  e.  SH  |  A  C_  x }  e.  _V )  ->  ( span `  A )  = 
|^| { x  e.  SH  |  A  C_  x }
)
153, 9, 14syl2anc 645 1  |-  ( A 
C_  ~H  ->  ( span `  A )  =  |^| { x  e.  SH  |  A  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   E.wrex 2517   {crab 2520   _Vcvv 2757    C_ wss 3113   ~Pcpw 3585   |^|cint 3822   ` cfv 4659   ~Hchil 21445   SHcsh 21454   spancspn 21458
This theorem is referenced by:  spancl  21861  spanss2  21870  spanid  21872  spanss  21873  shsval3i  21913  elspani  22068
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-i2m1 8759  ax-1ne0 8760  ax-rrecex 8763  ax-cnre 8764  ax-hilex 21525  ax-hfvadd 21526  ax-hv0cl 21529  ax-hfvmul 21531
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-recs 6342  df-rdg 6377  df-map 6728  df-n 9701  df-hlim 21498  df-sh 21732  df-ch 21747  df-span 21834
  Copyright terms: Public domain W3C validator