MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimfw Unicode version

Theorem spimfw 1627
Description: Specialization, with additional weakening to allow bundling of  x and  y. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-1017.) (Proof shortened by Wolf Lammen, 7-Aug-2017.)
Hypotheses
Ref Expression
spimfw.1  |-  ( -. 
ps  ->  A. x  -.  ps )
spimfw.2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimfw  |-  ( -. 
A. x  -.  x  =  y  ->  ( A. x ph  ->  ps )
)

Proof of Theorem spimfw
StepHypRef Expression
1 spimfw.2 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
21speimfw 1626 . 2  |-  ( -. 
A. x  -.  x  =  y  ->  ( A. x ph  ->  E. x ps ) )
3 df-ex 1529 . . 3  |-  ( E. x ps  <->  -.  A. x  -.  ps )
4 spimfw.1 . . . 4  |-  ( -. 
ps  ->  A. x  -.  ps )
54con1i 121 . . 3  |-  ( -. 
A. x  -.  ps  ->  ps )
63, 5sylbi 187 . 2  |-  ( E. x ps  ->  ps )
72, 6syl6 29 1  |-  ( -. 
A. x  -.  x  =  y  ->  ( A. x ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527   E.wex 1528
This theorem is referenced by:  spimw  1638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
  Copyright terms: Public domain W3C validator