MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqor Unicode version

Theorem sqeqor 11264
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sqeqor  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )

Proof of Theorem sqeqor
StepHypRef Expression
1 oveq1 5907 . . . 4  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( A ^ 2 )  =  ( if ( A  e.  CC ,  A ,  0 ) ^ 2 ) )
21eqeq1d 2324 . . 3  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( if ( A  e.  CC ,  A ,  0 ) ^
2 )  =  ( B ^ 2 ) ) )
3 eqeq1 2322 . . . 4  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( A  =  B  <-> 
if ( A  e.  CC ,  A , 
0 )  =  B ) )
4 eqeq1 2322 . . . 4  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( A  =  -u B 
<->  if ( A  e.  CC ,  A , 
0 )  =  -u B ) )
53, 4orbi12d 690 . . 3  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( A  =  B  \/  A  = 
-u B )  <->  ( if ( A  e.  CC ,  A ,  0 )  =  B  \/  if ( A  e.  CC ,  A ,  0 )  =  -u B ) ) )
62, 5bibi12d 312 . 2  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  =  B  \/  A  = 
-u B ) )  <-> 
( ( if ( A  e.  CC ,  A ,  0 ) ^ 2 )  =  ( B ^ 2 )  <->  ( if ( A  e.  CC ,  A ,  0 )  =  B  \/  if ( A  e.  CC ,  A ,  0 )  =  -u B ) ) ) )
7 oveq1 5907 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( B ^ 2 )  =  ( if ( B  e.  CC ,  B ,  0 ) ^ 2 ) )
87eqeq2d 2327 . . 3  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( if ( A  e.  CC ,  A ,  0 ) ^ 2 )  =  ( B ^ 2 )  <->  ( if ( A  e.  CC ,  A ,  0 ) ^ 2 )  =  ( if ( B  e.  CC ,  B ,  0 ) ^
2 ) ) )
9 eqeq2 2325 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( if ( A  e.  CC ,  A ,  0 )  =  B  <->  if ( A  e.  CC ,  A , 
0 )  =  if ( B  e.  CC ,  B ,  0 ) ) )
10 negeq 9089 . . . . 5  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  ->  -u B  =  -u if ( B  e.  CC ,  B ,  0 ) )
1110eqeq2d 2327 . . . 4  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( if ( A  e.  CC ,  A ,  0 )  = 
-u B  <->  if ( A  e.  CC ,  A ,  0 )  =  -u if ( B  e.  CC ,  B ,  0 ) ) )
129, 11orbi12d 690 . . 3  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( if ( A  e.  CC ,  A ,  0 )  =  B  \/  if ( A  e.  CC ,  A ,  0 )  =  -u B )  <->  ( if ( A  e.  CC ,  A ,  0 )  =  if ( B  e.  CC ,  B ,  0 )  \/  if ( A  e.  CC ,  A , 
0 )  =  -u if ( B  e.  CC ,  B ,  0 ) ) ) )
138, 12bibi12d 312 . 2  |-  ( B  =  if ( B  e.  CC ,  B ,  0 )  -> 
( ( ( if ( A  e.  CC ,  A ,  0 ) ^ 2 )  =  ( B ^ 2 )  <->  ( if ( A  e.  CC ,  A ,  0 )  =  B  \/  if ( A  e.  CC ,  A ,  0 )  =  -u B ) )  <-> 
( ( if ( A  e.  CC ,  A ,  0 ) ^ 2 )  =  ( if ( B  e.  CC ,  B ,  0 ) ^
2 )  <->  ( if ( A  e.  CC ,  A ,  0 )  =  if ( B  e.  CC ,  B ,  0 )  \/  if ( A  e.  CC ,  A , 
0 )  =  -u if ( B  e.  CC ,  B ,  0 ) ) ) ) )
14 0cn 8876 . . . 4  |-  0  e.  CC
1514elimel 3651 . . 3  |-  if ( A  e.  CC ,  A ,  0 )  e.  CC
1614elimel 3651 . . 3  |-  if ( B  e.  CC ,  B ,  0 )  e.  CC
1715, 16sqeqori 11262 . 2  |-  ( ( if ( A  e.  CC ,  A , 
0 ) ^ 2 )  =  ( if ( B  e.  CC ,  B ,  0 ) ^ 2 )  <->  ( if ( A  e.  CC ,  A ,  0 )  =  if ( B  e.  CC ,  B ,  0 )  \/  if ( A  e.  CC ,  A , 
0 )  =  -u if ( B  e.  CC ,  B ,  0 ) ) )
186, 13, 17dedth2h 3641 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( A  =  B  \/  A  =  -u B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1633    e. wcel 1701   ifcif 3599  (class class class)co 5900   CCcc 8780   0cc0 8782   -ucneg 9083   2c2 9840   ^cexp 11151
This theorem is referenced by:  sqeqd  11698  sqrmo  11784  eqsqror  11897  4sqlem10  13041  cxpsqr  20103  quad2  20188  atandm3  20227  atans2  20280  dvreasin  25340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-n0 10013  df-z 10072  df-uz 10278  df-seq 11094  df-exp 11152
  Copyright terms: Public domain W3C validator