MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqori Unicode version

Theorem sqeqori 11146
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.)
Hypotheses
Ref Expression
binom2.1  |-  A  e.  CC
binom2.2  |-  B  e.  CC
Assertion
Ref Expression
sqeqori  |-  ( ( A ^ 2 )  =  ( B ^
2 )  <->  ( A  =  B  \/  A  =  -u B ) )

Proof of Theorem sqeqori
StepHypRef Expression
1 binom2.1 . . . . 5  |-  A  e.  CC
2 binom2.2 . . . . 5  |-  B  e.  CC
31, 2subsqi 11145 . . . 4  |-  ( ( A ^ 2 )  -  ( B ^
2 ) )  =  ( ( A  +  B )  x.  ( A  -  B )
)
43eqeq1i 2263 . . 3  |-  ( ( ( A ^ 2 )  -  ( B ^ 2 ) )  =  0  <->  ( ( A  +  B )  x.  ( A  -  B
) )  =  0 )
51sqcli 11115 . . . 4  |-  ( A ^ 2 )  e.  CC
62sqcli 11115 . . . 4  |-  ( B ^ 2 )  e.  CC
75, 6subeq0i 9059 . . 3  |-  ( ( ( A ^ 2 )  -  ( B ^ 2 ) )  =  0  <->  ( A ^ 2 )  =  ( B ^ 2 ) )
81, 2addcli 8774 . . . 4  |-  ( A  +  B )  e.  CC
91, 2subcli 9055 . . . 4  |-  ( A  -  B )  e.  CC
108, 9mul0ori 9349 . . 3  |-  ( ( ( A  +  B
)  x.  ( A  -  B ) )  =  0  <->  ( ( A  +  B )  =  0  \/  ( A  -  B )  =  0 ) )
114, 7, 103bitr3i 268 . 2  |-  ( ( A ^ 2 )  =  ( B ^
2 )  <->  ( ( A  +  B )  =  0  \/  ( A  -  B )  =  0 ) )
12 orcom 378 . 2  |-  ( ( ( A  +  B
)  =  0  \/  ( A  -  B
)  =  0 )  <-> 
( ( A  -  B )  =  0  \/  ( A  +  B )  =  0 ) )
131, 2subeq0i 9059 . . 3  |-  ( ( A  -  B )  =  0  <->  A  =  B )
141, 2subnegi 9058 . . . . 5  |-  ( A  -  -u B )  =  ( A  +  B
)
1514eqeq1i 2263 . . . 4  |-  ( ( A  -  -u B
)  =  0  <->  ( A  +  B )  =  0 )
162negcli 9047 . . . . 5  |-  -u B  e.  CC
171, 16subeq0i 9059 . . . 4  |-  ( ( A  -  -u B
)  =  0  <->  A  =  -u B )
1815, 17bitr3i 244 . . 3  |-  ( ( A  +  B )  =  0  <->  A  =  -u B )
1913, 18orbi12i 509 . 2  |-  ( ( ( A  -  B
)  =  0  \/  ( A  +  B
)  =  0 )  <-> 
( A  =  B  \/  A  =  -u B ) )
2011, 12, 193bitri 264 1  |-  ( ( A ^ 2 )  =  ( B ^
2 )  <->  ( A  =  B  \/  A  =  -u B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ wo 359    = wceq 1619    e. wcel 1621  (class class class)co 5757   CCcc 8668   0cc0 8670    + caddc 8673    x. cmul 8675    - cmin 8970   -ucneg 8971   2c2 9728   ^cexp 11035
This theorem is referenced by:  subsq0i  11147  sqeqor  11148  sinhalfpilem  19761
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-2 9737  df-n0 9898  df-z 9957  df-uz 10163  df-seq 10978  df-exp 11036
  Copyright terms: Public domain W3C validator