MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Unicode version

Theorem sqgt0sr 8744
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 8718 . . . . 5  |-  0R  e.  R.
2 ltsosr 8732 . . . . . 6  |-  <R  Or  R.
3 sotrieq 4357 . . . . . 6  |-  ( ( 
<R  Or  R.  /\  ( A  e.  R.  /\  0R  e.  R. ) )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
42, 3mpan 651 . . . . 5  |-  ( ( A  e.  R.  /\  0R  e.  R. )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
51, 4mpan2 652 . . . 4  |-  ( A  e.  R.  ->  ( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
65necon2abid 2516 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  <->  A  =/=  0R ) )
7 m1r 8720 . . . . . . . . 9  |-  -1R  e.  R.
8 mulclsr 8722 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
97, 8mpan2 652 . . . . . . . 8  |-  ( A  e.  R.  ->  ( A  .R  -1R )  e. 
R. )
10 ltasr 8738 . . . . . . . 8  |-  ( ( A  .R  -1R )  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
119, 10syl 15 . . . . . . 7  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
12 addcomsr 8725 . . . . . . . . 9  |-  ( ( A  .R  -1R )  +R  A )  =  ( A  +R  ( A  .R  -1R ) )
13 pn0sr 8739 . . . . . . . . 9  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
1412, 13syl5eq 2340 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  A )  =  0R )
15 0idsr 8735 . . . . . . . . 9  |-  ( ( A  .R  -1R )  e.  R.  ->  ( ( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R )
)
169, 15syl 15 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R ) )
1714, 16breq12d 4052 . . . . . . 7  |-  ( A  e.  R.  ->  (
( ( A  .R  -1R )  +R  A
)  <R  ( ( A  .R  -1R )  +R  0R )  <->  0R  <R  ( A  .R  -1R )
) )
1811, 17bitrd 244 . . . . . 6  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  0R  <R  ( A  .R  -1R )
) )
19 mulgt0sr 8743 . . . . . . 7  |-  ( ( 0R  <R  ( A  .R  -1R )  /\  0R  <R  ( A  .R  -1R ) )  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2019anidms 626 . . . . . 6  |-  ( 0R 
<R  ( A  .R  -1R )  ->  0R  <R  (
( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2118, 20syl6bi 219 . . . . 5  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) ) )
22 mulcomsr 8727 . . . . . . . . . . . 12  |-  ( -1R 
.R  A )  =  ( A  .R  -1R )
2322oveq1i 5884 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( ( A  .R  -1R )  .R  -1R )
24 mulasssr 8728 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( -1R  .R  ( A  .R  -1R ) )
25 mulasssr 8728 . . . . . . . . . . 11  |-  ( ( A  .R  -1R )  .R  -1R )  =  ( A  .R  ( -1R 
.R  -1R ) )
2623, 24, 253eqtr3i 2324 . . . . . . . . . 10  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  -1R ) )
27 m1m1sr 8731 . . . . . . . . . . 11  |-  ( -1R 
.R  -1R )  =  1R
2827oveq2i 5885 . . . . . . . . . 10  |-  ( A  .R  ( -1R  .R  -1R ) )  =  ( A  .R  1R )
2926, 28eqtri 2316 . . . . . . . . 9  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  1R )
3029oveq2i 5885 . . . . . . . 8  |-  ( A  .R  ( -1R  .R  ( A  .R  -1R )
) )  =  ( A  .R  ( A  .R  1R ) )
31 mulasssr 8728 . . . . . . . 8  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  ( A  .R  -1R ) ) )
32 mulasssr 8728 . . . . . . . 8  |-  ( ( A  .R  A )  .R  1R )  =  ( A  .R  ( A  .R  1R ) )
3330, 31, 323eqtr4i 2326 . . . . . . 7  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( ( A  .R  A
)  .R  1R )
34 mulclsr 8722 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( A  .R  A
)  e.  R. )
35 1idsr 8736 . . . . . . . . 9  |-  ( ( A  .R  A )  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3634, 35syl 15 . . . . . . . 8  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( ( A  .R  A )  .R  1R )  =  ( A  .R  A ) )
3736anidms 626 . . . . . . 7  |-  ( A  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3833, 37syl5eq 2340 . . . . . 6  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  A ) )
3938breq2d 4051 . . . . 5  |-  ( A  e.  R.  ->  ( 0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R )
)  <->  0R  <R  ( A  .R  A ) ) )
4021, 39sylibd 205 . . . 4  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( A  .R  A
) ) )
41 mulgt0sr 8743 . . . . . 6  |-  ( ( 0R  <R  A  /\  0R  <R  A )  ->  0R  <R  ( A  .R  A ) )
4241anidms 626 . . . . 5  |-  ( 0R 
<R  A  ->  0R  <R  ( A  .R  A ) )
4342a1i 10 . . . 4  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  0R  <R  ( A  .R  A
) ) )
4440, 43jaod 369 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  ->  0R  <R  ( A  .R  A ) ) )
456, 44sylbird 226 . 2  |-  ( A  e.  R.  ->  ( A  =/=  0R  ->  0R  <R  ( A  .R  A
) ) )
4645imp 418 1  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039    Or wor 4329  (class class class)co 5874   R.cnr 8505   0Rc0r 8506   1Rc1r 8507   -1Rcm1r 8508    +R cplr 8509    .R cmr 8510    <R cltr 8511
This theorem is referenced by:  recexsr  8745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-1p 8622  df-plp 8623  df-mp 8624  df-ltp 8625  df-plpr 8695  df-mpr 8696  df-enr 8697  df-nr 8698  df-plr 8699  df-mr 8700  df-ltr 8701  df-0r 8702  df-1r 8703  df-m1r 8704
  Copyright terms: Public domain W3C validator