MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqr2irr Unicode version

Theorem sqr2irr 12490
Description: The square root of 2 is irrational. See zsqrelqelz 12792 for a generalization to all non-square integers. The proof's core is proven in sqr2irrlem 12489, which shows that if  A  /  B  =  sqr ( 2 ), then  A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
sqr2irr  |-  ( sqr `  2 )  e/  QQ

Proof of Theorem sqr2irr
StepHypRef Expression
1 peano2nn 9726 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
2 breq2 4001 . . . . . . . . 9  |-  ( n  =  1  ->  (
z  <  n  <->  z  <  1 ) )
32imbi1d 310 . . . . . . . 8  |-  ( n  =  1  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
43ralbidv 2538 . . . . . . 7  |-  ( n  =  1  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
5 breq2 4001 . . . . . . . . 9  |-  ( n  =  y  ->  (
z  <  n  <->  z  <  y ) )
65imbi1d 310 . . . . . . . 8  |-  ( n  =  y  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
76ralbidv 2538 . . . . . . 7  |-  ( n  =  y  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
8 breq2 4001 . . . . . . . . 9  |-  ( n  =  ( y  +  1 )  ->  (
z  <  n  <->  z  <  ( y  +  1 ) ) )
98imbi1d 310 . . . . . . . 8  |-  ( n  =  ( y  +  1 )  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  ( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
109ralbidv 2538 . . . . . . 7  |-  ( n  =  ( y  +  1 )  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
11 nnnlt1 9744 . . . . . . . . 9  |-  ( z  e.  NN  ->  -.  z  <  1 )
1211pm2.21d 100 . . . . . . . 8  |-  ( z  e.  NN  ->  (
z  <  1  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) ) )
1312rgen 2583 . . . . . . 7  |-  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )
14 nnrp 10331 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR+ )
15 rphalflt 10348 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  ( y  /  2 )  < 
y )
1614, 15syl 17 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
y  /  2 )  <  y )
17 breq1 4000 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  (
z  <  y  <->  ( y  /  2 )  < 
y ) )
18 oveq2 5800 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  / 
2 )  ->  (
x  /  z )  =  ( x  / 
( y  /  2
) ) )
1918neeq2d 2435 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  ( y  /  2 ) ) ) )
2019ralbidv 2538 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
2117, 20imbi12d 313 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  / 
2 )  ->  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( (
y  /  2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) ) )
2221rcla4v 2855 . . . . . . . . . . . . . 14  |-  ( ( y  /  2 )  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2322com13 76 . . . . . . . . . . . . 13  |-  ( ( y  /  2 )  <  y  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2416, 23syl 17 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
25 simpr 449 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( z  /  y ) )
26 zcn 9997 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  z  e.  CC )
2726ad2antlr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  CC )
28 nncn 9722 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  CC )
30 2cn 9784 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  CC
3130a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2  e.  CC )
32 nnne0 9746 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y  =/=  0 )
3332ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  =/=  0
)
34 2ne0 9797 . . . . . . . . . . . . . . . . . . 19  |-  2  =/=  0
3534a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2  =/=  0
)
3627, 29, 31, 33, 35divcan7d 9532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  / 
( y  /  2
) )  =  ( z  /  y ) )
3725, 36eqtr4d 2293 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( ( z  /  2 )  /  ( y  / 
2 ) ) )
38 simplr 734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  ZZ )
39 simpll 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  NN )
4038, 39, 25sqr2irrlem 12489 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  e.  ZZ  /\  ( y  /  2 )  e.  NN ) )
4140simprd 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( y  / 
2 )  e.  NN )
4240simpld 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( z  / 
2 )  e.  ZZ )
43 oveq1 5799 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( z  / 
2 )  ->  (
x  /  ( y  /  2 ) )  =  ( ( z  /  2 )  / 
( y  /  2
) ) )
4443neeq2d 2435 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( z  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  <->  ( sqr `  2 )  =/=  (
( z  /  2
)  /  ( y  /  2 ) ) ) )
4544rcla4v 2855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  /  2 )  e.  ZZ  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) )  ->  ( sqr `  2 )  =/=  ( ( z  / 
2 )  /  (
y  /  2 ) ) ) )
4642, 45syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  -> 
( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4741, 46embantd 52 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4847necon2bd 2470 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( sqr `  2 )  =  ( ( z  / 
2 )  /  (
y  /  2 ) )  ->  -.  (
( y  /  2
)  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  (
y  /  2 ) ) ) ) )
4937, 48mpd 16 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  -.  ( (
y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
5049ex 425 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( sqr `  2
)  =  ( z  /  y )  ->  -.  ( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
5150necon2ad 2469 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( z  /  y ) ) )
5251ralrimdva 2608 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
5324, 52syld 42 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
54 oveq1 5799 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
5554neeq2d 2435 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( sqr `  2
)  =/=  ( x  /  y )  <->  ( sqr `  2 )  =/=  (
z  /  y ) ) )
5655cbvralv 2739 . . . . . . . . . . 11  |-  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  y
)  <->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) )
5753, 56syl6ibr 220 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
y ) ) )
58 oveq2 5800 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
x  /  z )  =  ( x  / 
y ) )
5958neeq2d 2435 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  y ) ) )
6059ralbidv 2538 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6160ceqsralv 2790 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6257, 61sylibrd 227 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
6362ancld 538 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
64 nnleltp1 10039 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  z  <  ( y  +  1 ) ) )
65 nnre 9721 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  ->  z  e.  RR )
66 nnre 9721 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  RR )
67 leloe 8876 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6865, 66, 67syl2an 465 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6964, 68bitr3d 248 . . . . . . . . . . . . 13  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
7069ancoms 441 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
7170imbi1d 310 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  \/  z  =  y )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
72 jaob 761 . . . . . . . . . . 11  |-  ( ( ( z  <  y  \/  z  =  y
)  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7371, 72syl6bb 254 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
7473ralbidva 2534 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
75 r19.26 2650 . . . . . . . . 9  |-  ( A. z  e.  NN  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) )  <-> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7674, 75syl6bb 254 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( A. z  e.  NN  (
z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) )  /\  A. z  e.  NN  (
z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) ) )
7763, 76sylibrd 227 . . . . . . 7  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
784, 7, 10, 10, 13, 77nnind 9732 . . . . . 6  |-  ( ( y  +  1 )  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
791, 78syl 17 . . . . 5  |-  ( y  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
8066ltp1d 9655 . . . . 5  |-  ( y  e.  NN  ->  y  <  ( y  +  1 ) )
81 breq1 4000 . . . . . . 7  |-  ( z  =  y  ->  (
z  <  ( y  +  1 )  <->  y  <  ( y  +  1 ) ) )
82 df-ne 2423 . . . . . . . . . 10  |-  ( ( sqr `  2 )  =/=  ( x  / 
y )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) )
8359, 82syl6bb 254 . . . . . . . . 9  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
8483ralbidv 2538 . . . . . . . 8  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
85 ralnex 2528 . . . . . . . 8  |-  ( A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  / 
y )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
8684, 85syl6bb 254 . . . . . . 7  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) )
8781, 86imbi12d 313 . . . . . 6  |-  ( z  =  y  ->  (
( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( y  <  ( y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8887rcla4v 2855 . . . . 5  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( y  <  (
y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8979, 80, 88mp2d 43 . . . 4  |-  ( y  e.  NN  ->  -.  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9089nrex 2620 . . 3  |-  -.  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y )
91 elq 10286 . . . 4  |-  ( ( sqr `  2 )  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2
)  =  ( x  /  y ) )
92 rexcom 2676 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2 )  =  ( x  /  y
)  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9391, 92bitri 242 . . 3  |-  ( ( sqr `  2 )  e.  QQ  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
9490, 93mtbir 292 . 2  |-  -.  ( sqr `  2 )  e.  QQ
95 df-nel 2424 . 2  |-  ( ( sqr `  2 )  e/  QQ  <->  -.  ( sqr `  2 )  e.  QQ )
9694, 95mpbir 202 1  |-  ( sqr `  2 )  e/  QQ
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421    e/ wnel 2422   A.wral 2518   E.wrex 2519   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   2c2 9763   ZZcz 9992   QQcq 10284   RR+crp 10322   sqrcsqr 11684
This theorem is referenced by:  nthruc  12492
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-q 10285  df-rp 10323  df-seq 11014  df-exp 11072  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687
  Copyright terms: Public domain W3C validator