MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqr2irrlem Unicode version

Theorem sqr2irrlem 12526
Description: Lemma for irrationality of square root of 2. The core of the proof - if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqr2irrlem.1  |-  ( ph  ->  A  e.  ZZ )
sqr2irrlem.2  |-  ( ph  ->  B  e.  NN )
sqr2irrlem.3  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
Assertion
Ref Expression
sqr2irrlem  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )

Proof of Theorem sqr2irrlem
StepHypRef Expression
1 2cn 9816 . . . . . . . . . . . 12  |-  2  e.  CC
2 sqrth 11848 . . . . . . . . . . . 12  |-  ( 2  e.  CC  ->  (
( sqr `  2
) ^ 2 )  =  2 )
31, 2ax-mp 8 . . . . . . . . . . 11  |-  ( ( sqr `  2 ) ^ 2 )  =  2
4 sqr2irrlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
54oveq1d 5873 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  2
) ^ 2 )  =  ( ( A  /  B ) ^
2 ) )
63, 5syl5eqr 2329 . . . . . . . . . 10  |-  ( ph  ->  2  =  ( ( A  /  B ) ^ 2 ) )
7 sqr2irrlem.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
87zcnd 10118 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
9 sqr2irrlem.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN )
109nncnd 9762 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
119nnne0d 9790 . . . . . . . . . . 11  |-  ( ph  ->  B  =/=  0 )
128, 10, 11sqdivd 11258 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  /  B ) ^ 2 )  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
136, 12eqtrd 2315 . . . . . . . . 9  |-  ( ph  ->  2  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
1413oveq1d 5873 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( B ^
2 ) )  x.  ( B ^ 2 ) ) )
158sqcld 11243 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
169nnsqcld 11265 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  NN )
1716nncnd 9762 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
1816nnne0d 9790 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  =/=  0 )
1915, 17, 18divcan1d 9537 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2014, 19eqtrd 2315 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2120oveq1d 5873 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( ( A ^ 2 )  /  2 ) )
221a1i 10 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
23 2ne0 9829 . . . . . . . 8  |-  2  =/=  0
2423a1i 10 . . . . . . 7  |-  ( ph  ->  2  =/=  0 )
2517, 22, 24divcan3d 9541 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( B ^ 2 ) )
2621, 25eqtr3d 2317 . . . . 5  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  =  ( B ^ 2 ) )
2726, 16eqeltrd 2357 . . . 4  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  NN )
2827nnzd 10116 . . 3  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  ZZ )
29 zesq 11224 . . . 4  |-  ( A  e.  ZZ  ->  (
( A  /  2
)  e.  ZZ  <->  ( ( A ^ 2 )  / 
2 )  e.  ZZ ) )
307, 29syl 15 . . 3  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  <->  ( ( A ^ 2 )  /  2 )  e.  ZZ ) )
3128, 30mpbird 223 . 2  |-  ( ph  ->  ( A  /  2
)  e.  ZZ )
321sqvali 11183 . . . . . . . 8  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
3332oveq2i 5869 . . . . . . 7  |-  ( ( A ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( A ^
2 )  /  (
2  x.  2 ) )
348, 22, 24sqdivd 11258 . . . . . . 7  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 2 ^ 2 ) ) )
3515, 22, 22, 24, 24divdiv1d 9567 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( A ^ 2 )  /  ( 2  x.  2 ) ) )
3633, 34, 353eqtr4a 2341 . . . . . 6  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( ( A ^ 2 )  /  2 )  /  2 ) )
3726oveq1d 5873 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( B ^ 2 )  /  2 ) )
3836, 37eqtrd 2315 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( B ^ 2 )  /  2 ) )
39 zsqcl 11174 . . . . . 6  |-  ( ( A  /  2 )  e.  ZZ  ->  (
( A  /  2
) ^ 2 )  e.  ZZ )
4031, 39syl 15 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  e.  ZZ )
4138, 40eqeltrrd 2358 . . . 4  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  ZZ )
4216nnrpd 10389 . . . . . 6  |-  ( ph  ->  ( B ^ 2 )  e.  RR+ )
4342rphalfcld 10402 . . . . 5  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  RR+ )
4443rpgt0d 10393 . . . 4  |-  ( ph  ->  0  <  ( ( B ^ 2 )  /  2 ) )
45 elnnz 10034 . . . 4  |-  ( ( ( B ^ 2 )  /  2 )  e.  NN  <->  ( (
( B ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( B ^
2 )  /  2
) ) )
4641, 44, 45sylanbrc 645 . . 3  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  NN )
47 nnesq 11225 . . . 4  |-  ( B  e.  NN  ->  (
( B  /  2
)  e.  NN  <->  ( ( B ^ 2 )  / 
2 )  e.  NN ) )
489, 47syl 15 . . 3  |-  ( ph  ->  ( ( B  / 
2 )  e.  NN  <->  ( ( B ^ 2 )  /  2 )  e.  NN ) )
4946, 48mpbird 223 . 2  |-  ( ph  ->  ( B  /  2
)  e.  NN )
5031, 49jca 518 1  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737    x. cmul 8742    < clt 8867    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   ^cexp 11104   sqrcsqr 11718
This theorem is referenced by:  sqr2irr  12527
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator