MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Unicode version

Theorem sqrmo 12095
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo  |-  ( A  e.  CC  ->  E* x  e.  CC (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Distinct variable group:    x, A

Proof of Theorem sqrmo
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simplr1 1000 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  A )
2 simprr1 1006 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y ^ 2 )  =  A )
31, 2eqtr4d 2478 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4 sqeqor 11533 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ^
2 )  =  ( y ^ 2 )  <-> 
( x  =  y  \/  x  =  -u y ) ) )
54ad2ant2r 729 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
( x ^ 2 )  =  ( y ^ 2 )  <->  ( x  =  y  \/  x  =  -u y ) ) )
63, 5mpbid 203 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  y  \/  x  =  -u y
) )
76ord 368 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  x  =  -u y
) )
8 3simpc 957 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
9 fveq2 5763 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
Re `  x )  =  ( Re `  -u y ) )
109breq2d 4255 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  -u y
) ) )
11 oveq2 6125 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
_i  x.  x )  =  ( _i  x.  -u y ) )
12 neleq1 2706 . . . . . . . . . . . . 13  |-  ( ( _i  x.  x )  =  ( _i  x.  -u y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1311, 12syl 16 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1410, 13anbi12d 693 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
( 0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( 0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
158, 14syl5ibcom 213 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
1615ad2antlr 709 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
177, 16syld 43 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
18 negeq 9336 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  -u y  =  -u 0 )
19 neg0 9385 . . . . . . . . . . . . . . 15  |-  -u 0  =  0
2018, 19syl6eq 2491 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  -u y  =  0 )
2120eqeq2d 2454 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  0 ) )
22 eqeq2 2452 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2321, 22bitr4d 249 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  y ) )
2423biimpcd 217 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
y  =  0  ->  x  =  y )
)
2524necon3bd 2645 . . . . . . . . . 10  |-  ( x  =  -u y  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
267, 25syli 36 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
27 3simpc 957 . . . . . . . . . . . 12  |-  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  ->  (
0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )
28 cnpart 12083 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( 0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
2927, 28syl5ib 212 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( ( y ^ 2 )  =  A  /\  0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3029impancom 429 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  ( y  =/=  0  ->  -.  (
0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
3130adantl 454 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y  =/=  0  ->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
3226, 31syld 43 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3317, 32pm2.65d 169 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  -.  -.  x  =  y
)
3433notnotrd 108 . . . . . 6  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  x  =  y )
3534an4s 801 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) ) )  ->  x  =  y )
3635ex 425 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  x  =  y ) )
3736a1i 11 . . 3  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
) )
3837ralrimivv 2804 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
39 oveq1 6124 . . . . 5  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4039eqeq1d 2451 . . . 4  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
41 fveq2 5763 . . . . 5  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
4241breq2d 4255 . . . 4  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
43 oveq2 6125 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
44 neleq1 2706 . . . . 5  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4543, 44syl 16 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4640, 42, 453anbi123d 1255 . . 3  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
4746rmo4 3136 . 2  |-  ( E* x  e.  CC ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  <->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
4838, 47sylibr 205 1  |-  ( A  e.  CC  ->  E* x  e.  CC (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1654    e. wcel 1728    =/= wne 2606    e/ wnel 2607   A.wral 2712   E*wrmo 2715   class class class wbr 4243   ` cfv 5489  (class class class)co 6117   CCcc 9026   0cc0 9028   _ici 9030    x. cmul 9033    <_ cle 9159   -ucneg 9330   2c2 10087   RR+crp 10650   ^cexp 11420   Recre 11940
This theorem is referenced by:  resqreu  12096  sqrneg  12111  sqreu  12202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-cnex 9084  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-2nd 6386  df-riota 6585  df-recs 6669  df-rdg 6704  df-er 6941  df-en 7146  df-dom 7147  df-sdom 7148  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-div 9716  df-nn 10039  df-2 10096  df-n0 10260  df-z 10321  df-uz 10527  df-rp 10651  df-seq 11362  df-exp 11421  df-cj 11942  df-re 11943  df-im 11944
  Copyright terms: Public domain W3C validator