MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscls Structured version   Unicode version

Theorem sscls 17112
Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
sscls  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )

Proof of Theorem sscls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssintub 4060 . 2  |-  S  C_  |^|
{ x  e.  (
Clsd `  J )  |  S  C_  x }
2 clscld.1 . . 3  |-  X  = 
U. J
32clsval 17093 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
41, 3syl5sseqr 3389 1  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701    C_ wss 3312   U.cuni 4007   |^|cint 4042   ` cfv 5446   Topctop 16950   Clsdccld 17072   clsccl 17074
This theorem is referenced by:  iscld4  17121  elcls  17129  ntrcls0  17132  clslp  17204  restcls  17237  cncls2i  17326  nrmsep  17413  lpcls  17420  regsep2  17432  hauscmplem  17461  hauscmp  17462  clscon  17485  concompcld  17489  hausllycmp  17549  txcls  17628  ptclsg  17639  regr1lem  17763  kqreglem1  17765  kqreglem2  17766  kqnrmlem1  17767  kqnrmlem2  17768  fclscmpi  18053  clssubg  18130  tsmsid  18161  cnllycmp  18973  clsocv  19196  relcmpcmet  19261  bcthlem2  19270  bcthlem4  19272  limcnlp  19757  opnbnd  26319  opnregcld  26324  cldregopn  26325  heibor1lem  26509  heiborlem8  26518
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-top 16955  df-cld 17075  df-cls 17077
  Copyright terms: Public domain W3C validator