MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin2 Unicode version

Theorem ssfin2 7948
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e. FinII )

Proof of Theorem ssfin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . 4  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  A  e. FinII )
2 elpwi 3635 . . . . . 6  |-  ( x  e.  ~P ~P B  ->  x  C_  ~P B
)
32adantl 452 . . . . 5  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  x  C_  ~P B )
4 simplr 731 . . . . . 6  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  B  C_  A
)
5 sspwb 4225 . . . . . 6  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
64, 5sylib 188 . . . . 5  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  ~P B  C_  ~P A )
73, 6sstrd 3191 . . . 4  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  x  C_  ~P A )
8 fin2i 7923 . . . . 5  |-  ( ( ( A  e. FinII  /\  x  C_ 
~P A )  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) )  ->  U. x  e.  x
)
98ex 423 . . . 4  |-  ( ( A  e. FinII  /\  x  C_  ~P A )  ->  (
( x  =/=  (/)  /\ [ C.]  Or  x )  ->  U. x  e.  x ) )
101, 7, 9syl2anc 642 . . 3  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) )
1110ralrimiva 2628 . 2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x )  ->  U. x  e.  x ) )
12 ssexg 4162 . . . 4  |-  ( ( B  C_  A  /\  A  e. FinII )  ->  B  e.  _V )
1312ancoms 439 . . 3  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e.  _V )
14 isfin2 7922 . . 3  |-  ( B  e.  _V  ->  ( B  e. FinII 
<-> 
A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
1513, 14syl 15 . 2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  ( B  e. FinII  <->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
1611, 15mpbird 223 1  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e. FinII )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1686    =/= wne 2448   A.wral 2545   _Vcvv 2790    C_ wss 3154   (/)c0 3457   ~Pcpw 3627   U.cuni 3829    Or wor 4315   [ C.] crpss 6278  FinIIcfin2 7907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-pw 3629  df-sn 3648  df-pr 3649  df-uni 3830  df-po 4316  df-so 4317  df-fin2 7914
  Copyright terms: Public domain W3C validator