HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval3 Unicode version

Theorem sshjval3 21935
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice  CH. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )

Proof of Theorem sshjval3
StepHypRef Expression
1 ax-hilex 21581 . . . . . 6  |-  ~H  e.  _V
21elpw2 4177 . . . . 5  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
31elpw2 4177 . . . . 5  |-  ( B  e.  ~P ~H  <->  B  C_  ~H )
4 uniprg 3844 . . . . 5  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  U. { A ,  B }  =  ( A  u.  B )
)
52, 3, 4syl2anbr 466 . . . 4  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  U. { A ,  B }  =  ( A  u.  B ) )
65fveq2d 5531 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  U. { A ,  B } )  =  ( _|_ `  ( A  u.  B )
) )
76fveq2d 5531 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  ( _|_ `  U. { A ,  B }
) )  =  ( _|_ `  ( _|_ `  ( A  u.  B
) ) ) )
8 prssi 3773 . . . 4  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  { A ,  B }  C_  ~P ~H )
92, 3, 8syl2anbr 466 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  { A ,  B }  C_  ~P ~H )
10 hsupval 21915 . . 3  |-  ( { A ,  B }  C_ 
~P ~H  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
119, 10syl 15 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
12 sshjval 21931 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
137, 11, 123eqtr4rd 2328 1  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    u. cun 3152    C_ wss 3154   ~Pcpw 3627   {cpr 3643   U.cuni 3829   ` cfv 5257  (class class class)co 5860   ~Hchil 21501   _|_cort 21512    vH chj 21515    \/H chsup 21516
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-hilex 21581
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-iota 5221  df-fun 5259  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-chj 21891  df-chsup 21892
  Copyright terms: Public domain W3C validator