HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval3 Unicode version

Theorem sshjval3 21763
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice  CH. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )

Proof of Theorem sshjval3
StepHypRef Expression
1 ax-hilex 21409 . . . . . 6  |-  ~H  e.  _V
21elpw2 4064 . . . . 5  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
31elpw2 4064 . . . . 5  |-  ( B  e.  ~P ~H  <->  B  C_  ~H )
4 uniprg 3742 . . . . 5  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  U. { A ,  B }  =  ( A  u.  B )
)
52, 3, 4syl2anbr 468 . . . 4  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  U. { A ,  B }  =  ( A  u.  B ) )
65fveq2d 5381 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  U. { A ,  B } )  =  ( _|_ `  ( A  u.  B )
) )
76fveq2d 5381 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  ( _|_ `  U. { A ,  B }
) )  =  ( _|_ `  ( _|_ `  ( A  u.  B
) ) ) )
8 prssi 3671 . . . 4  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  { A ,  B }  C_  ~P ~H )
92, 3, 8syl2anbr 468 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  { A ,  B }  C_  ~P ~H )
10 hsupval 21743 . . 3  |-  ( { A ,  B }  C_ 
~P ~H  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
119, 10syl 17 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
12 sshjval 21759 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
137, 11, 123eqtr4rd 2296 1  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    u. cun 3076    C_ wss 3078   ~Pcpw 3530   {cpr 3545   U.cuni 3727   ` cfv 4592  (class class class)co 5710   ~Hchil 21329   _|_cort 21340    vH chj 21343    \/H chsup 21344
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-hilex 21409
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-chj 21719  df-chsup 21720
  Copyright terms: Public domain W3C validator