MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnei2 Unicode version

Theorem ssnei2 17168
Description: Any subset of  X containing a neigborhood of a set is a neighborhood of this set. Proposition Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
ssnei2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem ssnei2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simprr 734 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  C_  X )
2 neii2 17160 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
3 sstr2 3347 . . . . . . 7  |-  ( g 
C_  N  ->  ( N  C_  M  ->  g  C_  M ) )
43com12 29 . . . . . 6  |-  ( N 
C_  M  ->  (
g  C_  N  ->  g 
C_  M ) )
54anim2d 549 . . . . 5  |-  ( N 
C_  M  ->  (
( S  C_  g  /\  g  C_  N )  ->  ( S  C_  g  /\  g  C_  M
) ) )
65reximdv 2809 . . . 4  |-  ( N 
C_  M  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) )
72, 6mpan9 456 . . 3  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  N  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) )
87adantrr 698 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) )
9 neips.1 . . . . 5  |-  X  = 
U. J
109neiss2 17153 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
119isnei 17155 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( M  e.  ( ( nei `  J
) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
1210, 11syldan 457 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( M  e.  ( ( nei `  J
) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
1312adantr 452 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  ( M  e.  ( ( nei `  J ) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
141, 8, 13mpbir2and 889 1  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698    C_ wss 3312   U.cuni 4007   ` cfv 5445   Topctop 16946   neicnei 17149
This theorem is referenced by:  topssnei  17176  nllyrest  17537  nllyidm  17540  hausllycmp  17545  cldllycmp  17546  txnlly  17657  neifil  17900  utop2nei  18268  cnllycmp  18969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-top 16951  df-nei 17150
  Copyright terms: Public domain W3C validator