MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnlim Unicode version

Theorem ssnlim 4676
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.)
Assertion
Ref Expression
ssnlim  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  A  C_  om )
Distinct variable group:    x, A

Proof of Theorem ssnlim
StepHypRef Expression
1 limom 4673 . . . 4  |-  Lim  om
2 ssel 3176 . . . . 5  |-  ( A 
C_  { x  e.  On  |  -.  Lim  x }  ->  ( om  e.  A  ->  om  e.  { x  e.  On  |  -.  Lim  x } ) )
3 limeq 4406 . . . . . . . 8  |-  ( x  =  om  ->  ( Lim  x  <->  Lim  om ) )
43notbid 285 . . . . . . 7  |-  ( x  =  om  ->  ( -.  Lim  x  <->  -.  Lim  om ) )
54elrab 2925 . . . . . 6  |-  ( om  e.  { x  e.  On  |  -.  Lim  x }  <->  ( om  e.  On  /\  -.  Lim  om ) )
65simprbi 450 . . . . 5  |-  ( om  e.  { x  e.  On  |  -.  Lim  x }  ->  -.  Lim  om )
72, 6syl6 29 . . . 4  |-  ( A 
C_  { x  e.  On  |  -.  Lim  x }  ->  ( om  e.  A  ->  -.  Lim  om ) )
81, 7mt2i 110 . . 3  |-  ( A 
C_  { x  e.  On  |  -.  Lim  x }  ->  -.  om  e.  A )
98adantl 452 . 2  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  -.  om  e.  A )
10 ordom 4667 . . . 4  |-  Ord  om
11 ordtri1 4427 . . . 4  |-  ( ( Ord  A  /\  Ord  om )  ->  ( A  C_ 
om 
<->  -.  om  e.  A
) )
1210, 11mpan2 652 . . 3  |-  ( Ord 
A  ->  ( A  C_ 
om 
<->  -.  om  e.  A
) )
1312adantr 451 . 2  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  ( A  C_ 
om 
<->  -.  om  e.  A
) )
149, 13mpbird 223 1  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  A  C_  om )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   {crab 2549    C_ wss 3154   Ord word 4393   Oncon0 4394   Lim wlim 4395   omcom 4658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4307  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659
  Copyright terms: Public domain W3C validator