MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonunii Unicode version

Theorem ssonunii 4578
Description: The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
ssonuni.1  |-  A  e. 
_V
Assertion
Ref Expression
ssonunii  |-  ( A 
C_  On  ->  U. A  e.  On )

Proof of Theorem ssonunii
StepHypRef Expression
1 ssonuni.1 . 2  |-  A  e. 
_V
2 ssonuni 4577 . 2  |-  ( A  e.  _V  ->  ( A  C_  On  ->  U. A  e.  On ) )
31, 2ax-mp 8 1  |-  ( A 
C_  On  ->  U. A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1685   _Vcvv 2789    C_ wss 3153   U.cuni 3828   Oncon0 4391
This theorem is referenced by:  bm2.5ii  4596  tz9.12lem2  7456  ttukeylem6  8137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-tr 4115  df-eprel 4304  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395
  Copyright terms: Public domain W3C validator