MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspn Structured version   Unicode version

Theorem sspn 22227
Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y  |-  Y  =  ( BaseSet `  W )
sspn.n  |-  N  =  ( normCV `  U )
sspn.m  |-  M  =  ( normCV `  W )
sspn.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspn  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  =  ( N  |`  Y ) )

Proof of Theorem sspn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sspn.h . . . . 5  |-  H  =  ( SubSp `  U )
21sspnv 22217 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  W  e.  NrmCVec )
3 sspn.y . . . . 5  |-  Y  =  ( BaseSet `  W )
4 sspn.m . . . . 5  |-  M  =  ( normCV `  W )
53, 4nvf 22139 . . . 4  |-  ( W  e.  NrmCVec  ->  M : Y --> RR )
62, 5syl 16 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M : Y --> RR )
7 ffn 5583 . . 3  |-  ( M : Y --> RR  ->  M  Fn  Y )
86, 7syl 16 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  Fn  Y )
9 eqid 2435 . . . . . 6  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
10 sspn.n . . . . . 6  |-  N  =  ( normCV `  U )
119, 10nvf 22139 . . . . 5  |-  ( U  e.  NrmCVec  ->  N : (
BaseSet `  U ) --> RR )
12 ffn 5583 . . . . 5  |-  ( N : ( BaseSet `  U
) --> RR  ->  N  Fn  ( BaseSet `  U )
)
1311, 12syl 16 . . . 4  |-  ( U  e.  NrmCVec  ->  N  Fn  ( BaseSet
`  U ) )
1413adantr 452 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  N  Fn  ( BaseSet `  U )
)
159, 3, 1sspba 22218 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Y  C_  ( BaseSet `  U )
)
16 fnssres 5550 . . 3  |-  ( ( N  Fn  ( BaseSet `  U )  /\  Y  C_  ( BaseSet `  U )
)  ->  ( N  |`  Y )  Fn  Y
)
1714, 15, 16syl2anc 643 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( N  |`  Y )  Fn  Y )
18 ffun 5585 . . . . . . 7  |-  ( N : ( BaseSet `  U
) --> RR  ->  Fun  N )
1911, 18syl 16 . . . . . 6  |-  ( U  e.  NrmCVec  ->  Fun  N )
20 funres 5484 . . . . . 6  |-  ( Fun 
N  ->  Fun  ( N  |`  Y ) )
2119, 20syl 16 . . . . 5  |-  ( U  e.  NrmCVec  ->  Fun  ( N  |`  Y ) )
2221ad2antrr 707 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  Fun  ( N  |`  Y ) )
23 fnresdm 5546 . . . . . . 7  |-  ( M  Fn  Y  ->  ( M  |`  Y )  =  M )
248, 23syl 16 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( M  |`  Y )  =  M )
25 eqid 2435 . . . . . . . . . 10  |-  ( +v
`  U )  =  ( +v `  U
)
26 eqid 2435 . . . . . . . . . 10  |-  ( +v
`  W )  =  ( +v `  W
)
27 eqid 2435 . . . . . . . . . 10  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
28 eqid 2435 . . . . . . . . . 10  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
2925, 26, 27, 28, 10, 4, 1isssp 22215 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  ( W  e.  H  <->  ( W  e.  NrmCVec 
/\  ( ( +v
`  W )  C_  ( +v `  U )  /\  ( .s OLD `  W )  C_  ( .s OLD `  U )  /\  M  C_  N
) ) ) )
3029simplbda 608 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( +v `  W
)  C_  ( +v `  U )  /\  ( .s OLD `  W ) 
C_  ( .s OLD `  U )  /\  M  C_  N ) )
3130simp3d 971 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  C_  N )
32 ssres 5164 . . . . . . 7  |-  ( M 
C_  N  ->  ( M  |`  Y )  C_  ( N  |`  Y ) )
3331, 32syl 16 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( M  |`  Y )  C_  ( N  |`  Y ) )
3424, 33eqsstr3d 3375 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  C_  ( N  |`  Y ) )
3534adantr 452 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  M  C_  ( N  |`  Y ) )
36 fdm 5587 . . . . . . . 8  |-  ( M : Y --> RR  ->  dom 
M  =  Y )
375, 36syl 16 . . . . . . 7  |-  ( W  e.  NrmCVec  ->  dom  M  =  Y )
3837eleq2d 2502 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( x  e. 
dom  M  <->  x  e.  Y
) )
3938biimpar 472 . . . . 5  |-  ( ( W  e.  NrmCVec  /\  x  e.  Y )  ->  x  e.  dom  M )
402, 39sylan 458 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  x  e.  dom  M )
41 funssfv 5738 . . . 4  |-  ( ( Fun  ( N  |`  Y )  /\  M  C_  ( N  |`  Y )  /\  x  e.  dom  M )  ->  ( ( N  |`  Y ) `  x )  =  ( M `  x ) )
4222, 35, 40, 41syl3anc 1184 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  ( ( N  |`  Y ) `  x )  =  ( M `  x ) )
4342eqcomd 2440 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  ( M `  x )  =  ( ( N  |`  Y ) `
 x ) )
448, 17, 43eqfnfvd 5822 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  =  ( N  |`  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    C_ wss 3312   dom cdm 4870    |` cres 4872   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446   RRcr 8981   NrmCVeccnv 22055   +vcpv 22056   BaseSetcba 22057   .s
OLDcns 22058   normCVcnmcv 22061   SubSpcss 22212
This theorem is referenced by:  sspnval  22228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-1st 6341  df-2nd 6342  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-nmcv 22071  df-ssp 22213
  Copyright terms: Public domain W3C validator